En route to a dianilinyl-substituted carbo-cyclohexadiene with promising electrical properties
DOI:
https://doi.org/10.17721/fujcV3I1P46-52Keywords:
Butatrienes, carbo-cyclohexadiene, carbo-mers, macrocyclization, single molecule conductanceAbstract

The macro-aromatic carbo-benzene core para-disubstituted by 4-anilinyl groups is known to be an efficient single-molecule conductor, exhibiting a conductance of 106 nS measured by the scanning tunneling microscopy-break junction technique. The linear carbo-butadiene analogue bearing the same anilinyl substituents was found to be less efficient, with a conductance of 2.7 nS. The reason of this difference could be elucidated through the study of the charge transport properties of a cyclically locked carbo-butadiene core in a carbo-cyclohexadiene derivative. In this paper, advances in the synthesis of this challenging dianilinyl-substituted carbo-cyclohexadiene are presented.
References
Leroyer L, Lepetit C, Rives A, Maraval V, Saffon-Merceron N, Kandaskalov D, Kieffer D, Chauvin R. From Hexaoxy-[6]Pericyclynes to Carbo -Cyclohexadienes, Carbo -Benzenes, and Dihydro- Carbo -Benzenes: Synthesis, Structure, and Chromophoric and Redox Properties . Chemistry - A European Journal 2012;18(11):3226-3240. https://doi.org/10.1002/chem.201102993
Chauvin R. “Carbomers”. I. A general concept of expanded molecules. Tetrahedron Letters 1995;36(3):397-400. https://doi.org/10.1016/0040-4039(94)02275-g
Maraval V, Chauvin R. From Macrocyclic Oligo-acetylenes to Aromatic Ring Carbo -mers . Chemical Reviews 2006;106(12):5317-5343. https://doi.org/10.1021/cr050964e
Scott L, DeCicco G, Hyun J, Reinhardt G. Decamethyl[5]pericyclyne. A novel homoconjugated cyclic polyacetylene. J. Am. Chem. Soc. 1983;105(26):7760-7761. https://doi.org/10.1021/ja00364a057
Scott L, DeCicco G, Hyun J, Reinhardt G. Cyclynes. Part 4. Pericyclynes of the order [5], [6], [7], and [8]. Simple convergent syntheses and chemical reactions of the first homoconjugated cyclic polyacetylenes. J. Am. Chem. Soc. 1985;107(23):6546-6555. https://doi.org/10.1021/ja00309a021
Maurette L, Tedeschi C, Sermot E, Soleilhavoup M, Hussain F, Donnadieu B, Chauvin R. Synthesis and stereochemical resolution of functional [5]pericyclynes. Tetrahedron 2004;60(44):10077-10098. https://doi.org/10.1016/j.tet.2004.07.052
Saccavini C, Tedeschi C, Maurette L, Sui-Seng C, Zou C, Soleilhavoup M, Vendier L, Chauvin R. Functional [6]Pericyclynes: Synthesis through [14+4] and [8+10] Cyclization Strategies. Chemistry - A European Journal 2007;13(17):4895-4913. https://doi.org/10.1002/chem.200601191
Leroyer L, Zou C, Maraval V, Chauvin R. Synthesis and stereochemical resolution of a [6]pericyclynedione: Versatile access to pericyclynediol precursors of carbo-benzenes. Comptes Rendus Chimie 2009;12(3-4):412-429. https://doi.org/10.1016/j.crci.2008.09.018
Chauvin R, Lepetit C, Maraval V, Leroyer L. Variation of aromaticity by twisting or expanding the ring content. Pure and Applied Chemistry 2010;82(4):769-800. https://doi.org/10.1351/pac-con-09-11-07
Kuwatani Y, Watanabe N, Ueda I. Synthesis of the first 3,6,9,15,18,18-hexa-substituted-1,2,4,5,7,8,10,11,13,14,16,17-dodecadehydro[18]annulenes with D6h-symmetry. Tetrahedron Letters 1995;36(1):119-122. https://doi.org/10.1016/0040-4039(94)02181-a
Suzuki R, Tsukuda H, Watanabe N, Kuwatani Y, Ueda I. Synthesis, structure and properties of 3,9,15-tri- and 3,6,9,12,15,18-hexasubstituted dodecadehydro[18]annulenes (C18H3R3 and C18R6) with D6h-symmetry. Tetrahedron 1998;54(11):2477-2496. https://doi.org/10.1016/s0040-4020(98)00011-8
Chauvin R. “Carbomers”. II. En route to [C,C]6carbo-benzene. Tetrahedron Letters 1995;36(3):401-404. https://doi.org/10.1016/0040-4039(94)02276-h
Saccavini C, Sui-Seng C, Maurette L, Lepetit C, Soula S, Zou C, Donnadieu B, Chauvin R. Functional [6]Pericyclynes: Aromatization to Substitutedcarbo-Benzenes. Chemistry - A European Journal 2007;13(17):4914-4931. https://doi.org/10.1002/chem.200601193
Zou C, Duhayon C, Maraval V, Chauvin R. Hexasilylated Total Carbomer of Benzene. Angewandte Chemie International Edition 2007;46(23):4337-4341. https://doi.org/10.1002/anie.200605262
Rives A, Baglai I, Malytskyi V, Maraval V, Saffon-Merceron N, Voitenko Z, Chauvin R. Highly π electron-rich macro-aromatics: bis(p-aminophenyl)-carbo-benzenes and their DBA acyclic references. Chemical Communications 2012;48(70):8763. https://doi.org/10.1039/c2cc34176j
Baglai I, Maraval V, Bijani C, Saffon-Merceron N, Voitenko Z, Volovenko Y, Chauvin R. Enhanced π-frustration in carbo-benzenic chromophores. Chemical Communications 2013;49(75):8374. https://doi.org/10.1039/c3cc43204a
Rives A, Baglai I, Barthes C, Maraval V, Saffon-Merceron N, Saquet A, Voitenko Z, Volovenko Y, Chauvin R. Carbo-cyclohexadienes vs. carbo-benzenes: structure and conjugative properties. Chem. Sci. 2015;6(2):1139-1149. https://doi.org/10.1039/c4sc02742f
Xu B. Measurement of Single-Molecule Resistance by Repeated Formation of Molecular Junctions. Science 2003;301(5637):1221-1223. https://doi.org/10.1126/science.1087481
Li Z, Smeu M, Rives A, Maraval V, Chauvin R, Ratner M, Borguet E. Towards graphyne molecular electronics. Nature Communications 2015;6:6321. https://doi.org/10.1038/ncomms7321
Diez-Perez I, Li Z, Hihath J, Li J, Zhang C, Yang X, Zang L, Dai Y, Feng X, Muellen K, Tao N. Gate-controlled electron transport in coronenes as a bottom-up approach towards graphene transistors. Nature Communications 2010;1(3):1-5. https://doi.org/10.1038/ncomms1029
Rives A, Maraval V, Saffon-Merceron N, Chauvin R. First Perphenylated carbo -Oligoacetylenes: An Extension of the Polytriacetylene Family . Chemistry - A European Journal 2012;18(46):14702-14707. https://doi.org/10.1002/chem.201201555
Rives A, Maraval V, Saffon-Merceron N, Chauvin R. Functional carbo -Butadienes: Nonaromatic Conjugation Effects through a 14-Carbon, 24-π-Electron Backbone . Chemistry - A European Journal 2013;20(2):483-492. https://doi.org/10.1002/chem.201303169
Zhang J, Schuster G. Ylidions: a new reactive intermediate prepared by photosensitized one-electron oxidation of phenacyl sulfonium ylides. J. Am. Chem. Soc. 1989;111(18):7149-7155. https://doi.org/10.1021/ja00200a038
Journet M, Cai D, DiMichele L, Larsen R. Highly efficient synthesis of α,β-acetylenic aldehydes from terminal alkynes using DMF as the formylating reagent. Tetrahedron Letters 1998;39(36):6427-6428. https://doi.org/10.1016/s0040-4039(98)01352-5
Downloads
Published
Issue
Section
License
Copyright (c) 2015 French-Ukrainian Journal of Chemistry

This work is licensed under a Creative Commons Attribution 4.0 International License.
The French‑Ukrainian Journal of Chemistry holds copyright and publishes all articles under a Creative Commons Attribution 4.0 International licence (CC BY 4.0).
This license permits unrestricted use, sharing, adaptation, distribution, and reproduction in any medium or format, provided that the original author(s) and source are credited, a link to the license is included, and any changes made are indicated.
Authors grant the French‑Ukrainian Journal of Chemistry the exclusive right of first publication and may enter into separate, non‑exclusive distribution agreements for the published version (e.g., institutional repository, book chapter). Authors are also encouraged to post pre‑prints and post‑prints online to increase visibility and citation.