En route to a dianilinyl-substituted carbo-cyclohexadiene with promising electrical properties

Authors

  • Oleg Lozynskyi Department of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska Street, 64/13, Kyiv 01601, Ukraine
  • Cécile Barthes CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP 44099, F-31077 Toulouse Cedex 4, France Université de Toulouse, UPS, ICT-FR 2599, 31062 Toulouse Cedex 9, France.
  • Arnaud Rives CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP 44099, F-31077 Toulouse Cedex 4, France Université de Toulouse, UPS, ICT-FR 2599, 31062 Toulouse Cedex 9, France.
  • Valérie Maraval CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP 44099, F-31077 Toulouse Cedex 4, France Université de Toulouse, UPS, ICT-FR 2599, 31062 Toulouse Cedex 9, France.
  • Zoia Voitenko Department of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska Street, 64/13, Kyiv 01601, Ukraine
  • Remi Chauvin CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP 44099, F-31077 Toulouse Cedex 4, France Université de Toulouse, UPS, ICT-FR 2599, 31062 Toulouse Cedex 9, France.

DOI:

https://doi.org/10.17721/fujcV3I1P46-52

Keywords:

Butatrienes, carbo-cyclohexadiene, carbo-mers, macrocyclization, single molecule conductance

Abstract


The macro-aromatic carbo-benzene core para-disubstituted by 4-anilinyl groups is known to be an efficient single-molecule conductor, exhibiting a conductance of 106 nS measured by the scanning tunneling microscopy-break junction technique. The linear carbo-butadiene analogue bearing the same anilinyl substituents was found to be less efficient, with a conductance of 2.7 nS. The reason of this difference could be elucidated through the study of the charge transport properties of a cyclically locked carbo-butadiene core in a carbo-cyclohexadiene derivative. In this paper, advances in the synthesis of this challenging dianilinyl-substituted carbo-cyclohexadiene are presented.

References

Leroyer L, Lepetit C, Rives A, Maraval V, Saffon-Merceron N, Kandaskalov D, Kieffer D, Chauvin R. From Hexaoxy-[6]Pericyclynes to Carbo -Cyclohexadienes, Carbo -Benzenes, and Dihydro- Carbo -Benzenes: Synthesis, Structure, and Chromophoric and Redox Properties . Chemistry - A European Journal 2012;18(11):3226-3240. https://doi.org/10.1002/chem.201102993

Chauvin R. “Carbomers”. I. A general concept of expanded molecules. Tetrahedron Letters 1995;36(3):397-400. https://doi.org/10.1016/0040-4039(94)02275-g

Maraval V, Chauvin R. From Macrocyclic Oligo-acetylenes to Aromatic Ring Carbo -mers . Chemical Reviews 2006;106(12):5317-5343. https://doi.org/10.1021/cr050964e

Scott L, DeCicco G, Hyun J, Reinhardt G. Decamethyl[5]pericyclyne. A novel homoconjugated cyclic polyacetylene. J. Am. Chem. Soc. 1983;105(26):7760-7761. https://doi.org/10.1021/ja00364a057

Scott L, DeCicco G, Hyun J, Reinhardt G. Cyclynes. Part 4. Pericyclynes of the order [5], [6], [7], and [8]. Simple convergent syntheses and chemical reactions of the first homoconjugated cyclic polyacetylenes. J. Am. Chem. Soc. 1985;107(23):6546-6555. https://doi.org/10.1021/ja00309a021

Maurette L, Tedeschi C, Sermot E, Soleilhavoup M, Hussain F, Donnadieu B, Chauvin R. Synthesis and stereochemical resolution of functional [5]pericyclynes. Tetrahedron 2004;60(44):10077-10098. https://doi.org/10.1016/j.tet.2004.07.052

Saccavini C, Tedeschi C, Maurette L, Sui-Seng C, Zou C, Soleilhavoup M, Vendier L, Chauvin R. Functional [6]Pericyclynes: Synthesis through [14+4] and [8+10] Cyclization Strategies. Chemistry - A European Journal 2007;13(17):4895-4913. https://doi.org/10.1002/chem.200601191

Leroyer L, Zou C, Maraval V, Chauvin R. Synthesis and stereochemical resolution of a [6]pericyclynedione: Versatile access to pericyclynediol precursors of carbo-benzenes. Comptes Rendus Chimie 2009;12(3-4):412-429. https://doi.org/10.1016/j.crci.2008.09.018

Chauvin R, Lepetit C, Maraval V, Leroyer L. Variation of aromaticity by twisting or expanding the ring content. Pure and Applied Chemistry 2010;82(4):769-800. https://doi.org/10.1351/pac-con-09-11-07

Kuwatani Y, Watanabe N, Ueda I. Synthesis of the first 3,6,9,15,18,18-hexa-substituted-1,2,4,5,7,8,10,11,13,14,16,17-dodecadehydro[18]annulenes with D6h-symmetry. Tetrahedron Letters 1995;36(1):119-122. https://doi.org/10.1016/0040-4039(94)02181-a

Suzuki R, Tsukuda H, Watanabe N, Kuwatani Y, Ueda I. Synthesis, structure and properties of 3,9,15-tri- and 3,6,9,12,15,18-hexasubstituted dodecadehydro[18]annulenes (C18H3R3 and C18R6) with D6h-symmetry. Tetrahedron 1998;54(11):2477-2496. https://doi.org/10.1016/s0040-4020(98)00011-8

Chauvin R. “Carbomers”. II. En route to [C,C]6carbo-benzene. Tetrahedron Letters 1995;36(3):401-404. https://doi.org/10.1016/0040-4039(94)02276-h

Saccavini C, Sui-Seng C, Maurette L, Lepetit C, Soula S, Zou C, Donnadieu B, Chauvin R. Functional [6]Pericyclynes: Aromatization to Substitutedcarbo-Benzenes. Chemistry - A European Journal 2007;13(17):4914-4931. https://doi.org/10.1002/chem.200601193

Zou C, Duhayon C, Maraval V, Chauvin R. Hexasilylated Total Carbomer of Benzene. Angewandte Chemie International Edition 2007;46(23):4337-4341. https://doi.org/10.1002/anie.200605262

Rives A, Baglai I, Malytskyi V, Maraval V, Saffon-Merceron N, Voitenko Z, Chauvin R. Highly π electron-rich macro-aromatics: bis(p-aminophenyl)-carbo-benzenes and their DBA acyclic references. Chemical Communications 2012;48(70):8763. https://doi.org/10.1039/c2cc34176j

Baglai I, Maraval V, Bijani C, Saffon-Merceron N, Voitenko Z, Volovenko Y, Chauvin R. Enhanced π-frustration in carbo-benzenic chromophores. Chemical Communications 2013;49(75):8374. https://doi.org/10.1039/c3cc43204a

Rives A, Baglai I, Barthes C, Maraval V, Saffon-Merceron N, Saquet A, Voitenko Z, Volovenko Y, Chauvin R. Carbo-cyclohexadienes vs. carbo-benzenes: structure and conjugative properties. Chem. Sci. 2015;6(2):1139-1149. https://doi.org/10.1039/c4sc02742f

Xu B. Measurement of Single-Molecule Resistance by Repeated Formation of Molecular Junctions. Science 2003;301(5637):1221-1223. https://doi.org/10.1126/science.1087481

Li Z, Smeu M, Rives A, Maraval V, Chauvin R, Ratner M, Borguet E. Towards graphyne molecular electronics. Nature Communications 2015;6:6321. https://doi.org/10.1038/ncomms7321

Diez-Perez I, Li Z, Hihath J, Li J, Zhang C, Yang X, Zang L, Dai Y, Feng X, Muellen K, Tao N. Gate-controlled electron transport in coronenes as a bottom-up approach towards graphene transistors. Nature Communications 2010;1(3):1-5. https://doi.org/10.1038/ncomms1029

Rives A, Maraval V, Saffon-Merceron N, Chauvin R. First Perphenylated carbo -Oligoacetylenes: An Extension of the Polytriacetylene Family . Chemistry - A European Journal 2012;18(46):14702-14707. https://doi.org/10.1002/chem.201201555

Rives A, Maraval V, Saffon-Merceron N, Chauvin R. Functional carbo -Butadienes: Nonaromatic Conjugation Effects through a 14-Carbon, 24-π-Electron Backbone . Chemistry - A European Journal 2013;20(2):483-492. https://doi.org/10.1002/chem.201303169

Zhang J, Schuster G. Ylidions: a new reactive intermediate prepared by photosensitized one-electron oxidation of phenacyl sulfonium ylides. J. Am. Chem. Soc. 1989;111(18):7149-7155. https://doi.org/10.1021/ja00200a038

Journet M, Cai D, DiMichele L, Larsen R. Highly efficient synthesis of α,β-acetylenic aldehydes from terminal alkynes using DMF as the formylating reagent. Tetrahedron Letters 1998;39(36):6427-6428. https://doi.org/10.1016/s0040-4039(98)01352-5

Downloads

Published

2015-03-10

Issue

Section

Articles