Adjusting the cation and anion nature in ionic liquids used for the growth control of nanoparticles of organic conductors

Dominique de Caro, Christophe Faulmann, Lydie Valade, Kane Jacob, Benoit Cormary


Ionic liquids are used for controlling the growth of organic conductors as nanoparticles. We review the conditions of preparation of nanoparticles of conductors derived from tetrathiafulvalene (TTF), tetramethyltetraselenafulvalene (TMTSF) and bis-ethylenedithiotetrathiafulvalene (BEDT-TTF). They are prepared by electrocrystallization using an ionic liquid supporting electrolyte in which the cation plays the role of growth controller and the anion enters the composition of the expected organic conductor. Stable suspensions of nanoparticles are obtained in one case, a valuable characteristic for potential applications in electronic devices.


organic conductor; superconductor; nanoparticle; electrocrystallization; ionic liquid

Full Text:



Valade, L. and Tanaka, H. (2010) Molecular Inorganic Conductors and Superconductors, in Molecular Materials (eds D. W. Bruce, D. O'Hare and R. I. Walton), John Wiley & Sons, Ltd, Chichester, UK

Cassoux P, Valade L, Fabre P. Electrochemical Methods, Electrocrystallization. Comprehensive Coordination Chemistry II 2003:761-773.

Batail P, Boubekeur K, Fourmigué M, Gabriel J. Electrocrystallization, an Invaluable Tool for the Construction of Ordered, Electroactive Molecular Solids † . Chemistry of Materials 1998;10(10):3005-3015.

Bönnemann H, Richards R. Nanoscopic Metal Particles − Synthetic Methods and Potential Applications. Eur. J. Inorg. Chem. 2001;2001(10):2455.<2455::aid-ejic2455>;2-q

Zheng W, Li D, Guo W. Applications of Ionic Liquids (ILs) in Synthesis of Inorganic Nanomaterials. Ionic Liquids - Current State of the Art 2015.

Clavel G, Larionova J, Guari Y, Guérin C. Synthesis of Cyano-Bridged Magnetic Nanoparticles Using Room-Temperature Ionic Liquids. Chemistry - A European Journal 2006;12(14):3798-3804.

Becker J, Schäfer R, Festag R, Ruland W, Wendorff J, Pebler J, Quaiser S, Helbig W, Reetz M. Electrochemical growth of superparamagnetic cobalt clusters. The Journal of Chemical Physics 1995;103(7):2520.

de Caro D, Valade L, Faulmann C, Jacob K, Van Dorsselaer D, Chtioui I, Salmon L, Sabbar A, El Hajjaji S, Pérez E, Franceschi S, Fraxedas J. Nanoparticles of molecule-based conductors. New J. Chem. 2013;37(11):3331.

de Caro D, Faulmann C, Valade L, Jacob K, Chtioui I, Foulal S, de Caro P, Bergez-Lacoste M, Fraxedas J, Ballesteros B, Brooks J, Steven E, Winter L. Four Molecular Superconductors Isolated as Nanoparticles. Eur. J. Inorg. Chem. 2014;2014(24):4010-4016.

Urayama H, Yamochi H, Saito G, Nozawa K, Sugano T, Kinoshita M, Sato S, Oshima K, Kawamoto A, Tanaka J. A new ambient pressure organic superconductor based on BEDT-TTF with Tc higher than 10K (Tc=10.4K).. Chem. Lett. 1988;(1):55-58.

Gärtner S, Gogu E, Heinen I, Keller H, Klutz T, Schweitzer D. Superconductivity at 10 K and ambient pressure in the organic metal (BEDT - TTF)2Cu(SCN)2. Solid State Communications 1988;65(12):1531-1534.

Kinoshita N, Takahashi K, Murata K, Tokumoto M, Anzai H. ESR and electrical properties of a new organic metal: α-(BEDT-TTF)2Cu(NCS)2. Solid State Communications 1988;67(5):465-470.

Kadoya T, de Caro D, Jacob K, Faulmann C, Valade L, Mori T. Charge injection from organic charge-transfer salts to organic semiconductors. Journal of Materials Chemistry 2011;21(45):18421.

Angelova A, Moradpour A, Auban-Senzier P. Solvent dependence of organic superconducting thin film formation. Synthetic Metals 2004;143(2):187-190.

de Caro D, Jacob K, Faulmann C, Valade L. First nanoparticles of Bechgaard salts. Comptes Rendus Chimie 2013;16(7):629-633.