Preparation of IL-loaded microreactors based on polyelectrolyte microcapsules

Authors

  • Elodie Souron Normandie Univ., LCMT, ENSICAEN, UNICAEN, CNRS, 14000-France Institute of Condensed Matter & Nanosciences (Bio- & Soft Matter), Université catholique de Louvain, Croix du Sud 1, B-1348 Louvain-la-Neuve, Belgium
  • Annie-Claude Gaumont Normandie Univ., LCMT, ENSICAEN, UNICAEN, CNRS, 14000-France
  • Karine Glinel Institute of Condensed Matter & Nanosciences (Bio- & Soft Matter), Université catholique de Louvain, Croix du Sud 1, B-1348 Louvain-la-Neuve, Belgium
  • Isabelle Dez Laboratoire de Chimie Moléculaire et Thio-Organique (LCMT), UMR-CNRS 6507 6, Bd. du Maréchal Juin, ENSICAEN 14050 Caen, FRANCE

DOI:

https://doi.org/10.17721/fujcV4I1P95-108

Keywords:

Ionic liquid, Polyelectrolyte capsule, Layer-by-Layer, Microreactor, Radical polymerisation

Abstract

Encapsulation of ionic liquids (ILs) in crosslinked polyelectrolyte microcapsules, made via layer-by-layer assembly (LbL) was successfully conducted. Two different ILs were studied: 1-butyl-3-methylimidazolium tetrafluoroborate [Bmim]BF4 and 1-butyl-3-methylimidazolium hexafluorophosphate [Bmim]PF6. The polyelectrolyte microcapsules were successfully used as microcages for the synthesis of poly(methylmethacrylate) (PMMA), a non water-soluble polymer, in IL medium. Finally, the behaviour of the IL-loaded microreactors in polar and apolar solvents was evaluated. The strategies described in this study offer new routes for the preparation of microreactors incorporating IL which are of interest for many applications in the field of organic synthesis, catalysis and adsorption of active substances.

Supplementary information

References

Wasserscheid P, Welton T. Ionic liquids in synthesis. Wiley-VCH, Weinheim 2007. https://doi.org/10.1002/9783527621194

Austen Angell C, Ansari Y, Zhao Z. Ionic Liquids: Past, present and future. Faraday Discuss. 2012;154:9-27. https://doi.org/10.1039/c1fd00112d

Martins M, Frizzo C, Moreira D, Zanatta N, Bonacorso H. Ionic Liquids in Heterocyclic Synthesis. Chemical Reviews 2008;108(6):2015-2050. https://doi.org/10.1021/cr078399y

Singh R, Sharma M, Mamgain R, Rawat D. Ionic liquids: a versatile medium for palladium-catalyzed reactions. J. Braz. Chem. Soc. 2008;19(3):357-379. https://doi.org/10.1590/s0103-50532008000300002

Wilhelm R, Winkel A, Reddy P. Recent Advances in the Synthesis and Application of Chiral Ionic Liquids. Synthesis 2008;2008(7):999-1016. https://doi.org/10.1055/s-2008-1066986

Domínguez de María P. “Nonsolvent” Applications of Ionic Liquids in Biotransformations and Organocatalysis. Angewandte Chemie International Edition 2008;47(37):6960-6968. https://doi.org/10.1002/anie.200703305

Hallett J, Welton T. Room-Temperature Ionic Liquids: Solvents for Synthesis and Catalysis. 2. Chemical Reviews 2011;111(5):3508-3576. https://doi.org/10.1021/cr1003248

Han D, Row K. Recent Applications of Ionic Liquids in Separation Technology. Molecules 2010;15(4):2405-2426. https://doi.org/10.3390/molecules15042405

Jastorff B, Störmann R, Ranke J, Mölter K, Stock F, Oberheitmann B, Hoffmann W, Hoffmann J, Nüchter M, Ondruschka B, Filser J. How hazardous are ionic liquids? Structure–activity relationships and biological testing as important elements for sustainability evaluationThis work was presented at the Green Solvents for Catalysis Meeting held in Bruchsal, Germany, 13–16th October 2002.. Green Chemistry 2003;5(2):136-142. https://doi.org/10.1039/b211971d

Zhao D, Liao Y, Zhang Z. Toxicity of Ionic Liquids. Clean Soil Air Water 2007;35(1):42-48. https://doi.org/10.1002/clen.200600015

ZHENG Q, TAN Z, WANG D, HAO A, LIU B, LÜ X, SHI Q. Calorimetric Study and Thermal Analysis of 4-(Aminomethyl) Benzoic Acid. Chinese Journal of Chemistry 2009;27(4):672-676. https://doi.org/10.1002/cjoc.200990110

Stolte S, Abdulkarim S, Arning J, Blomeyer-Nienstedt A, Bottin-Weber U, Matzke M, Ranke J, Jastorff B, Thöming J. Primary biodegradation of ionic liquid cations, identification of degradation products of 1-methyl-3-octylimidazolium chloride and electrochemical wastewater treatment of poorly biodegradable compounds. Green Chem. 2008;10(2):214-224. https://doi.org/10.1039/b713095c

Harjani J, Farrell J, Garcia M, Singer R, Scammells P. Further investigation of the biodegradability of imidazolium ionic liquids. Green Chemistry 2009;11(6):821. https://doi.org/10.1039/b900787c

Valkenberg M, deCastro C, Hölderich W. Immobilisation of ionic liquids on solid supports. Green Chemistry 2001;4(2):88-93. https://doi.org/10.1039/b107946h

Mehnert C. Supported Ionic Liquid Catalysis. Chemistry - A European Journal 2005;11(1):50-56. https://doi.org/10.1002/chem.200400683

Riisagera A, Fehrmanna R, Haumannb M, Wasserscheidb P. Supported ionic liquids: versatile reaction and separation media. Topics in Catalysis 2006;40(1-4):91-102. https://doi.org/10.1007/s11244-006-0111-9

Gu Y, Li G. Ionic Liquids-Based Catalysis with Solids: State of the Art. Advanced Synthesis & Catalysis 2009;351(6):817-847. https://doi.org/10.1002/adsc.200900043

Hagiwara H, Ko K, Hoshi T, Suzuki T. Supported ionic liquid catalyst (Pd-SILC) for highly efficient and recyclable Suzuki–Miyaura reaction. Chem. Commun. 2007;(27):2838-2840. https://doi.org/10.1039/b704098a

Wolfson A, Vankelecom I, Jacobs P. Co-immobilization of transition-metal complexes and ionic liquids in a polymeric support for liquid-phase hydrogenations. Tetrahedron Letters 2003;44(6):1195-1198. https://doi.org/10.1016/s0040-4039(02)02843-5

Baudoux J, Perrigaud K, Madec P, Gaumont A, Dez I. Development of new SILP catalysts using chitosan as support. Green Chemistry 2007;9(12):1346. https://doi.org/10.1039/b709226a

Moucel R, Perrigaud K, Goupil J, Madec P, Marinel S, Guibal E, Gaumont A, Dez I. Importance of the Conditioning of the Chitosan Support in a Catalyst-Containing Ionic Liquid Phase Immobilised on Chitosan: The Palladium-Catalysed Allylation Reaction Case. Advanced Synthesis & Catalysis 2010;352(2-3):433-439. https://doi.org/10.1002/adsc.200900515

Clousier N, Moucel R, Naik P, Madec P, Gaumont A, Dez I. Catalytic materials based on catalysts containing ionic liquid phase supported on chitosan or alginate: Importance of the support. Comptes Rendus Chimie 2011;14(7-8):680-684. https://doi.org/10.1016/j.crci.2010.08.004

Vincent T, Guibal E. Chitosan-Supported Palladium Catalyst. 5. Nitrophenol Degradation Using Palladium Supported on Hollow Chitosan Fibers. Environmental Science & Technology 2004;38(15):4233-4240. https://doi.org/10.1021/es034862m

Guibal E, Vincent T, Jouannin C. Immobilization of extractants in biopolymer capsules for the synthesis of new resins: a focus on the encapsulation of tetraalkyl phosphonium ionic liquids. Journal of Materials Chemistry 2009;19(45):8515. https://doi.org/10.1039/b911318e

Jouannin C, Dez I, Gaumont A, Taulemesse J, Vincent T, Guibal E. Palladium supported on alginate/ionic liquid highly porous monoliths: Application to 4-nitroaniline hydrogenation. Applied Catalysis B: Environmental 2011;103(3-4):444-452. https://doi.org/10.1016/j.apcatb.2011.02.008

Le Bideau J, Viau L, Vioux A. Ionogels, ionic liquid based hybrid materials. Chem. Soc. Rev. 2011;40(2):907-925. https://doi.org/10.1039/c0cs00059k

Earle M, Seddon K. Ionic liquids. Green solvents for the future. Pure and Applied Chemistry 2000;72(7):1391-1398. https://doi.org/10.1351/pac200072071391

Gao H, Li J, Han B, Chen W, Zhang J, Zhang R, Yan D. Microemulsions with ionic liquid polar domains. Phys. Chem. Chem. Phys. 2004;6(11):2914. https://doi.org/10.1039/b402977a

Gao Y, Li N, Zheng L, Zhao X, Zhang S, Han B, Hou W, Li G. A cyclic voltammetric technique for the detection of micro-regions of bmimPF6/Tween 20/H 2 O microemulsions and their performance characterization by UV-Visspectroscopy . Green Chem. 2006;8(1):43-49. https://doi.org/10.1039/b510902g

Zheng Y, Eli W. Study on the Polarity of bmimPF 6 /Tween80/toluene Microemulsion Characterized by UV-Visible Spectroscopy . Journal of Dispersion Science and Technology 2009;30(5):698-703. https://doi.org/10.1080/01932690802553890

Yang W, Lu Y, Xiang Z, Luo G. Monodispersed microcapsules enclosing ionic liquid of 1-butyl-3-methylimidazolium hexafluorophosphate. Reactive and Functional Polymers 2007;67(1):81-86. https://doi.org/10.1016/j.reactfunctpolym.2006.10.005

Gao H, Xing J, Xiong X, Li Y, Li W, Liu Q, Wu Y, Liu H. Immobilization of Ionic Liquid [BMIM][PF 6 ] by Spraying Suspension Dispersion Method . Industrial & Engineering Chemistry Research 2008;47(13):4414-4417. https://doi.org/10.1021/ie701702n

Xiang Z, Lu Y, Zou Y, Gong X, Luo G. Preparation of microcapsules containing ionic liquids with a new solvent extraction system. Reactive and Functional Polymers 2008;68(8):1260-1265. https://doi.org/10.1016/j.reactfunctpolym.2008.06.006

Ma H, Dai L. Particle Self-Assembly in Ionic Liquid-in-Water Pickering Emulsions. Langmuir 2011;27(2):508-512. https://doi.org/10.1021/la103828x

Binks B, Dyab A, Fletcher P. Novel emulsions of ionic liquids stabilised solely by silica nanoparticles. Chemical Communications 2003;(20):2540. https://doi.org/10.1039/b308998c

Bradley L, Gupta M. Encapsulation of Ionic Liquids within Polymer Shells via Vapor Phase Deposition. Langmuir 2012;28(27):10276-10280. https://doi.org/10.1021/la301170a

Saito T, Torii S. Microcapsule for adsorption and recovery of cadmium(II) ion. Separation Science and Technology 2002;37(1):77-87. https://doi.org/10.1081/ss-120000322

Shchukin D, Patel A, Sukhorukov G, Lvov Y. Nanoassembly of Biodegradable Microcapsules for DNA Encasing. J. Am. Chem. Soc. 2004;126(11):3374-3375. https://doi.org/10.1021/ja036952x

Ye S, Wang C, Liu X, Tong Z, Ren B, Zeng F. New loading process and release properties of insulin from polysaccharide microcapsules fabricated through layer-by-layer assembly. Journal of Controlled Release 2006;112(1):79-87. https://doi.org/10.1016/j.jconrel.2006.01.015

Sukhorukov G, Fery A, Möhwald H. Intelligent micro- and nanocapsules. Progress in Polymer Science 2005;30(8-9):885-897. https://doi.org/10.1016/j.progpolymsci.2005.06.008

Peyratout C, Dähne L. Tailor-Made Polyelectrolyte Microcapsules: From Multilayers to Smart Containers. Angewandte Chemie International Edition 2004;43(29):3762-3783. https://doi.org/10.1002/anie.200300568

Sukhorukov G, Rogach A, Zebli B, Liedl T, Skirtach A, Köhler K, Antipov A, Gaponik N, Susha A, Winterhalter M, Parak W. Nanoengineered Polymer Capsules: Tools for Detection, Controlled Delivery, and Site-Specific Manipulation. Small 2004;1(2):194-200. https://doi.org/10.1002/smll.200400075

De Koker S, Hoogenboom R, De Geest B. Polymeric multilayer capsules for drug delivery. Chemical Society Reviews 2012;41(7):2867. https://doi.org/10.1039/c2cs15296g

Anandhakumar S, Debapriya M, Nagaraja V, Raichur A. Polyelectrolyte microcapsules for sustained delivery of water-soluble drugs. Materials Science and Engineering: C 2011;31(2):342-349. https://doi.org/10.1016/j.msec.2010.10.005

Shchukina E, Shchukin D. LbL coated microcapsules for delivering lipid-based drugs. Advanced Drug Delivery Reviews 2011;63(9):837-846. https://doi.org/10.1016/j.addr.2011.03.009

B. Neu, A. Voigt, R. Mitlöhner, S. . Biological cells as templates for hollow microcapsules. Journal of Microencapsulation 2001;18(3):385-395. https://doi.org/10.1080/02652040010000398

Fakhrullin R, Minullina R. Hybrid Cellular−Inorganic Core−Shell Microparticles: Encapsulation of Individual Living Cells in Calcium Carbonate Microshells. Langmuir 2009;25(12):6617-6621. https://doi.org/10.1021/la901395z

Zhao Z, Wang X, Qin X, Chen Q, Anzai J. Enzyme microcapsules with substrate selective permeability constructed via layer-by-layer polyelectrolyte self-assembly. Materials Science and Engineering: C 2012;32(3):569-573. https://doi.org/10.1016/j.msec.2011.12.010

Kazakova L, Shabarchina L, Sukhorukov G. Co-encapsulation of enzyme and sensitive dye as a tool for fabrication of microcapsule based sensor for urea measuring. Phys. Chem. Chem. Phys. 2011;13(23):11110. https://doi.org/10.1039/c1cp20354a

Nayak S, McShane M. Encapsulation of Peroxidase by Polymerizing Acrylic Acid Monomers in "Clean" Polyelectrolyte Microcapsules. Journal of Biomedical Nanotechnology 2007;3(2):170-177. https://doi.org/10.1166/jbn.2007.014

De Temmerman M, Demeester J, De Vos F, De Smedt S. Encapsulation Performance of Layer-by-Layer Microcapsules for Proteins. Biomacromolecules 2011;12(4):1283-1289. https://doi.org/10.1021/bm101559w

Wang Z, Qian L, Wang X, Yang F, Yang X. Construction of hollow DNA/PLL microcapsule as a dual carrier for controlled delivery of DNA and drug. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2008;326(1-2):29-36. https://doi.org/10.1016/j.colsurfa.2008.05.010

Moya S, Sukhorukov G, Auch M, Donath E, Möhwald H. Microencapsulation of Organic Solvents in Polyelectrolyte Multilayer Micrometer-Sized Shells. Journal of Colloid and Interface Science 1999;216(2):297-302. https://doi.org/10.1006/jcis.1999.6286

Cordeiro A, Coelho M, Sukhorukov G, Dubreuil F, Möhwald H. Effect of shear stress on adhering polyelectrolyte capsules. Journal of Colloid and Interface Science 2004;280(1):68-75. https://doi.org/10.1016/j.jcis.2004.07.040

Andreeva D, Gorin D, Möhwald H, Sukhorukov G. Novel Type of Self-Assembled Polyamide and Polyimide Nanoengineered ShellsFabrication of Microcontainers with Shielding Properties. Langmuir 2007;23(17):9031-9036. https://doi.org/10.1021/la700958h

Wang Z, Zhu H, Li D, Yang X. Preparation and application of single polyelectrolyte microcapsules possessing tunable autofluorescent properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2008;329(1-2):58-66. https://doi.org/10.1016/j.colsurfa.2008.06.050

Volodkin D, Petrov A, Prevot M, Sukhorukov G. Matrix Polyelectrolyte Microcapsules: New System for Macromolecule Encapsulation. Langmuir 2004;20(8):3398-3406. https://doi.org/10.1021/la036177z

Richert L, Boulmedais F, Lavalle P, Mutterer J, Ferreux E, Decher G, Schaaf P, Voegel J, Picart C. Improvement of Stability and Cell Adhesion Properties of Polyelectrolyte Multilayer Films by Chemical Cross-Linking. Biomacromolecules 2004;5(2):284-294. https://doi.org/10.1021/bm0342281

Dähne L, Leporatti S, Donath E, Möhwald H. Fabrication of Micro Reaction Cages with Tailored Properties. J. Am. Chem. Soc. 2001;123(23):5431-5436. https://doi.org/10.1021/ja002911e

Petrov A, Volodkin D, Sukhorukov G. Protein-Calcium Carbonate Coprecipitation: A Tool for Protein Encapsulation. Biotechnol Progress 2008;21(3):918-925. https://doi.org/10.1021/bp0495825

Szarpak A, Cui D, Dubreuil F, De Geest B, De Cock L, Picart C, Auzély-Velty R. Designing Hyaluronic Acid-Based Layer-by-Layer Capsules as a Carrier for Intracellular Drug Delivery. Biomacromolecules 2010;11(3):713-720. https://doi.org/10.1021/bm9012937

Kubisa P. Application of ionic liquids as solvents for polymerization processes. Progress in Polymer Science 2004;29(1):3-12. https://doi.org/10.1016/j.progpolymsci.2003.10.002

Erdmenger T, Guerrero-Sanchez C, Vitz J, Hoogenboom R, Schubert U. Recent developments in the utilization of green solvents in polymer chemistry. Chemical Society Reviews 2010;39(8):3317. https://doi.org/10.1039/b909964f

Kubisa P. Ionic liquids as solvents for polymerization processes—Progress and challenges. Progress in Polymer Science 2009;34(12):1333-1347. https://doi.org/10.1016/j.progpolymsci.2009.09.001

Downloads

Published

2016-05-31