Thermal stability of imidazolium-based ionic liquids

Léa Chancelier, Olivier Boyron, Thibaut Gutel, Catherine Santini

Abstract

This work highlights the factors tuning the thermal stability of imidazolium-based ionic liquids (IL) associated to bis(trifluoromethanesulfonyl)imide anion [NTf2]. The decomposition temperatures (Td) were evaluated by thermogravimetric analyses (TGA) with optimized parameters to obtain reproducible Td. The impact of the alkyl chain length and of the presence of functional groups and unsaturations on Td were evaluated. The thermal behaviour was governed by Van der Waals interactions between alkyl chains, and by inter and intra coulombic interactions such as hydrogen bonds.

Keywords

thermal stability; anion effect; alkyl chain length; functionalization

Full Text:

PDF

References

Wilkes J, Wasserscheid P, Welton T. (2007) Introduction, in Ionic Liquids in Synthesis, Second Edition (eds P. Wasserscheid and T. Welton), Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany https://doi.org/10.1002/9783527621194.ch1

Zhou Z, Matsumoto H, Tatsumi K. Low-Melting, Low-Viscous, Hydrophobic Ionic Liquids: Aliphatic Quaternary Ammonium Salts with Perfluoroalkyltrifluoroborates. Chemistry - A European Journal 2005;11(2):752-766. https://doi.org/10.1002/chem.200400817

Villanueva M, Coronas A, García J, Salgado J. Thermal Stability of Ionic Liquids for Their Application as New Absorbents. Industrial & Engineering Chemistry Research 2013;52(45):15718-15727. https://doi.org/10.1021/ie401656e

Fox D, Awad W, Gilman J, Maupin P, De Long H, Trulove P. Flammability, thermal stability, and phase change characteristics of several trialkylimidazolium saltsThe authors wish to thank the scientists at the Occupational Safety and Health Administration ? Salt Lake Technical Center for their measurement of the imidazolium flashpoints.The policy of the National Institute of Standards and Technology (NIST) is to use metric units of measurement in all its publications, and to provide statements of uncertainty for all original measurements. In this document however, data from organizations outside NIST are shown, which may include measurements in non-metric units or measurements without uncertainty statements. The identification of any commercial product or trade name does not imply endorsement or recommendation by NIST or the United States Air Force (USAF). Opinions, interpretations, conclusions, and recommendations are those of the authors and are not necessarily endorsed by the USAF or NIST.. Green Chemistry 2003;5(6):724. https://doi.org/10.1039/b308444b

Fox D, Gilman J, Morgan A, Shields J, Maupin P, Lyon R, De Long H, Trulove P. Flammability and Thermal Analysis Characterization of Imidazolium-Based Ionic Liquids. Industrial & Engineering Chemistry Research 2008;47(16):6327-6332. https://doi.org/10.1021/ie800665u

Diallo A, Len C, Morgan A, Marlair G. Corrigendum to “Revisiting physico-chemical hazards of ionic liquids”, Separation and Purification Technology 97 (2012) 228–234. Separation and Purification Technology 2012;101:68. https://doi.org/10.1016/j.seppur.2012.09.021

Chancelier L, Diallo A, Santini C, Marlair G, Gutel T, Mailley S, Len C. Targeting adequate thermal stability and fire safety in selecting ionic liquid-based electrolytes for energy storage. Phys. Chem. Chem. Phys. 2014;16(5):1967-1976. https://doi.org/10.1039/c3cp54225d

Hu Y, Xu P, Gui H, Wang X, Ding Y. Effect of imidazolium phosphate and multiwalled carbon nanotubes on thermal stability and flame retardancy of polylactide. Composites Part A: Applied Science and Manufacturing 2015;77:147-153. https://doi.org/10.1016/j.compositesa.2015.06.025

Welton T. Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis. Chemical Reviews 1999;99(8):2071-2084. https://doi.org/10.1021/cr980032t

Wilkes J, Wasserscheid P, Welton T. (2007) Introduction, in Ionic Liquids in Synthesis, Second Edition (eds P. Wasserscheid and T. Welton), Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany https://doi.org/10.1002/9783527621194.ch1

Werner S, Haumann M, Wasserscheid P. Ionic Liquids in Chemical Engineering. Annual Review of Chemical and Biomolecular Engineering 2010;1(1):203-230. https://doi.org/10.1146/annurev-chembioeng-073009-100915

Yang X, Yang R, Shi D, Wang S, Chen J, Guo H. Hydrophobic ionic liquids as novel extractants for gold(I) recovery from alkaline cyanide solutions. J. Chem. Technol. Biotechnol. 2014;90(6):1102-1109. https://doi.org/10.1002/jctb.4418

Olivier-Bourbigou H, Magna L, Morvan D. Ionic liquids and catalysis: Recent progress from knowledge to applications. Applied Catalysis A: General 2010;373(1-2):1-56. https://doi.org/10.1016/j.apcata.2009.10.008

Crowhurst L, Lancaster N, Pérez Arlandis J, Welton T. Manipulating Solute Nucleophilicity with Room Temperature Ionic Liquids. J. Am. Chem. Soc. 2004;126(37):11549-11555. https://doi.org/10.1021/ja046757y

Steinrück H, Wasserscheid P. Ionic Liquids in Catalysis. Catalysis Letters 2014;145(1):380-397. https://doi.org/10.1007/s10562-014-1435-x

Stärk K, Taccardi N, Bösmann A, Wasserscheid P. Oxidative Depolymerization of Lignin in Ionic Liquids. ChemSusChem 2010;3(6):719-723. https://doi.org/10.1002/cssc.200900242

Guo F, Zhang S, Wang J, Teng B, Zhang T, Fan M. Synthesis and Applications of Ionic Liquids in Clean Energy and Environment: A Review. Current Organic Chemistry 2015;19(5):455-468. https://doi.org/10.2174/1385272819666150114235649

Armand M, Endres F, MacFarlane D, Ohno H, Scrosati B. Ionic-liquid materials for the electrochemical challenges of the future. Nature Materials 2009;8(8):621-629. https://doi.org/10.1038/nmat2448

Welton T. Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis. Chemical Reviews 1999;99(8):2071-2084. https://doi.org/10.1021/cr980032t

NAKAGAWA H. . Electrochemistry 2015;83(6):496-497. https://doi.org/10.5796/electrochemistry.83.496

Appetecchi G, Montanino M, Passerini S. Ionic Liquid-Based Electrolytes for High Energy, Safer Lithium Batteries. ACS Symposium Series 2012:67-128. https://doi.org/10.1021/bk-2012-1117.ch004

Tokuda H, Hayamizu K, Ishii K, Susan M, Watanabe M. Physicochemical Properties and Structures of Room Temperature Ionic Liquids. 2. Variation of Alkyl Chain Length in Imidazolium Cation. The Journal of Physical Chemistry B 2005;109(13):6103-6110. https://doi.org/10.1021/jp044626d

Meine N, Benedito F, Rinaldi R. Thermal stability of ionic liquids assessed by potentiometric titration. Green Chemistry 2010;12(10):1711. https://doi.org/10.1039/c0gc00091d

Ngo H, LeCompte K, Hargens L, McEwen A. Thermal properties of imidazolium ionic liquids. Thermochimica Acta 2000;357-358:97-102. https://doi.org/10.1016/s0040-6031(00)00373-7

Mutch ML, Wilkes JS. PProceedings of the 11th International Symposium on Molten Salts, 1998;98:11

Valkenburg M, Vaughn R, Williams M, Wilkes J. Thermochemistry of ionic liquid heat-transfer fluids. Thermochimica Acta 2005;425(1-2):181-188. https://doi.org/10.1016/j.tca.2004.11.013

Nishida T, Tashiro Y, Yamamoto M. Physical and electrochemical properties of 1-alkyl-3-methylimidazolium tetrafluoroborate for electrolyte. Journal of Fluorine Chemistry 2003;120(2):135-141. https://doi.org/10.1016/s0022-1139(02)00322-6

Min GH, Yim T, Lee HY, Huh DH, Lee E, Mun J, Oh SM, Kim YG. Synthesis and Properties of Ionic Liquids:Imidazolium Tetrafluoroborates with Unsaturated Side Chains. Bulletin of the Korean Chemical Society 2006;27(6):847-852. https://doi.org/10.5012/bkcs.2006.27.6.847

McEwen A. Nonaqueous Electrolytes for Electrochemical Capacitors: Imidazolium Cations and Inorganic Fluorides with Organic Carbonates. Journal of The Electrochemical Society 1997;144(4):L84. https://doi.org/10.1149/1.1837561

Holopainen S, Nousiainen M, Puton J, Sillanpää M, Bardi U, Tolstogouzov A. Evaporation of ionic liquids at atmospheric pressure: Study by ion mobility spectrometry. Talanta 2011;83(3):907-915. https://doi.org/10.1016/j.talanta.2010.10.062

An YX, Zuo PJ, Cheng XQ, Liao LX, Yin GP. Preparation and Properties of Ionic-Liquid Mixed Solutions as a Safety Electrolyte for Lithium Ion Batteries. Int. J. Electrochem. Sc., 2011;6(7):2398-2410

Ishikawa M, Sugimoto T, Kikuta M, Ishiko E, Kono M. Pure ionic liquid electrolytes compatible with a graphitized carbon negative electrode in rechargeable lithium-ion batteries. Journal of Power Sources 2006;162(1):658-662. https://doi.org/10.1016/j.jpowsour.2006.02.077

Bonhôte P, Dias A, Papageorgiou N, Kalyanasundaram K, Grätzel M. Hydrophobic, Highly Conductive Ambient-Temperature Molten Salts † . Inorganic Chemistry 1996;35(5):1168-1178. https://doi.org/10.1021/ic951325x

Awad W, Gilman J, Nyden M, Harris R, Sutto T, Callahan J, Trulove P, DeLong H, Fox D. Thermal degradation studies of alkyl-imidazolium salts and their application in nanocomposites. Thermochimica Acta 2004;409(1):3-11. https://doi.org/10.1016/s0040-6031(03)00334-4

McEwen A. Electrochemical Properties of Imidazolium Salt Electrolytes for Electrochemical Capacitor Applications. Journal of The Electrochemical Society 1999;146(5):1687. https://doi.org/10.1149/1.1391827

Liu K, Zhou Y, Han H, Zhou S, Feng W, Nie J, Li H, Huang X, Armand M, Zhou Z. Ionic liquids based on (fluorosulfonyl)(pentafluoroethanesulfonyl)imide with various oniums. Electrochimica Acta 2010;55(23):7145-7151. https://doi.org/10.1016/j.electacta.2010.06.085

Erdmenger T, Vitz J, Wiesbrock F, Schubert U. Influence of different branched alkyl side chains on the properties of imidazolium-based ionic liquids. Journal of Materials Chemistry 2008;18(43):5267. https://doi.org/10.1039/b807119e

Fredlake C, Crosthwaite J, Hert D, Aki S, Brennecke J. Thermophysical Properties of Imidazolium-Based Ionic Liquids. Journal of Chemical & Engineering Data 2004;49(4):954-964. https://doi.org/10.1021/je034261a

Zhuravlev O, Verolainen N, Voronchikhina L. Thermal stability of 1,3-disubstituted imidazolium tetrachloroferrates, magnetic ionic liquids. Russian Journal of Applied Chemistry 2011;84(7):1158-1164. https://doi.org/10.1134/s1070427211070068

Kudo S, Zhou Z, Norinaga K, Hayashi J. Efficient levoglucosenone production by catalytic pyrolysis of cellulose mixed with ionic liquid. Green Chemistry 2011;13(11):3306. https://doi.org/10.1039/c1gc15975e

Huddleston J, Visser A, Reichert W, Willauer H, Broker G, Rogers R. Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chemistry 2001;3(4):156-164. https://doi.org/10.1039/b103275p

Holbrey J, Seddon K. The phase behaviour of 1-alkyl-3-methylimidazolium tetrafluoroborates; ionic liquids and ionic liquid crystals. J. Chem. Soc., Dalton Trans. 1999;(13):2133-2140. https://doi.org/10.1039/a902818h

Tokuda H, Hayamizu K, Ishii K, Susan M, Watanabe M. Physicochemical Properties and Structures of Room Temperature Ionic Liquids. 1. Variation of Anionic Species. The Journal of Physical Chemistry B 2004;108(42):16593-16600. https://doi.org/10.1021/jp047480r

Rodríguez-Pérez L, Coppel Y, Favier I, Teuma E, Serp P, Gómez M. Imidazolium-based ionic liquids immobilized on solid supports: effect on the structure and thermostability. Dalton Transactions 2010;39(32):7565. https://doi.org/10.1039/c0dt00397b

Harper N, Nizio K, Hendsbee A, Masuda J, Robertson K, Murphy L, Johnson M, Pye C, Clyburne J. Survey of Carbon Dioxide Capture in Phosphonium-Based Ionic Liquids and End-Capped Polyethylene Glycol Using DETA (DETA = Diethylenetriamine) as a Model Absorbent § . Industrial & Engineering Chemistry Research 2011;50(5):2822-2830. https://doi.org/10.1021/ie101734h

Muhammad A, Abdul Mutalib M, Wilfred C, Murugesan T, Shafeeq A. Thermophysical properties of 1-hexyl-3-methyl imidazolium based ionic liquids with tetrafluoroborate, hexafluorophosphate and bis(trifluoromethylsulfonyl)imide anions. The Journal of Chemical Thermodynamics 2008;40(9):1433-1438. https://doi.org/10.1016/j.jct.2008.04.016

Kulkarni P, Branco L, Crespo J, Nunes M, Raymundo A, Afonso C. Comparison of Physicochemical Properties of New Ionic Liquids Based on Imidazolium, Quaternary Ammonium, and Guanidinium Cations. Chemistry - A European Journal 2007;13(30):8478-8488. https://doi.org/10.1002/chem.200700965

Fox D, Gilman J, De Long H, Trulove P. TGA decomposition kinetics of 1-butyl-2,3-dimethylimidazolium tetrafluoroborate and the thermal effects of contaminants. The Journal of Chemical Thermodynamics 2005;37(9):900-905. https://doi.org/10.1016/j.jct.2005.04.020

Blake D, Moens L, Rudnicki D, Pilath H. Lifetime of Imidazolium Salts at Elevated Temperatures. Journal of Solar Energy Engineering 2006;128(1):54. https://doi.org/10.1115/1.2148976

Wang Y, Zaghib K, Guerfi A, Bazito F, Torresi R, Dahn J. Accelerating rate calorimetry studies of the reactions between ionic liquids and charged lithium ion battery electrode materials. Electrochimica Acta 2007;52(22):6346-6352. https://doi.org/10.1016/j.electacta.2007.04.067

Clough M, Geyer K, Hunt P, Mertes J, Welton T. Thermal decomposition of carboxylate ionic liquids: trends and mechanisms. Phys. Chem. Chem. Phys. 2013;15(47):20480. https://doi.org/10.1039/c3cp53648c

Cao Y, Mu T. Comprehensive Investigation on the Thermal Stability of 66 Ionic Liquids by Thermogravimetric Analysis. Industrial & Engineering Chemistry Research 2014;53(20):8651-8664. https://doi.org/10.1021/ie5009597

Maria Siedlecka E, Czerwicka M, Stolte S, Stepnowski P. Stability of Ionic Liquids in Application Conditions. Current Organic Chemistry 2011;15(12):1974-1991. https://doi.org/10.2174/138527211795703630

Earle M, Esperança J, Gilea M, Canongia Lopes J, Rebelo L, Magee J, Seddon K, Widegren J. The distillation and volatility of ionic liquids. Nature 2006;439(7078):831-834. https://doi.org/10.1038/nature04451

Maton C, De Vos N, Stevens C. Ionic liquid thermal stabilities: decomposition mechanisms and analysis tools. Chemical Society Reviews 2013;42(13):5963. https://doi.org/10.1039/c3cs60071h

Lee M, Niu Z, Slebodnick C, Gibson H. Structure and Properties of N , N -Alkylene Bis( N ′-Alkylimidazolium) Salts . The Journal of Physical Chemistry B 2010;114(21):7312-7319. https://doi.org/10.1021/jp102370j

Glenn A, Jones P. Thermal stability of ionic liquid BMI(BF4) in the presence of nucleophiles. Tetrahedron Letters 2004;45(37):6967-6969. https://doi.org/10.1016/j.tetlet.2004.07.050

Chan B, Chang N, Grimmett M. The synthesis and thermolysis of imidazole quaternary salts. Aust. J. Chem. 1977;30(9):2005. https://doi.org/10.1071/ch9772005

Kroon M, Buijs W, Peters C, Witkamp G. Quantum chemical aided prediction of the thermal decomposition mechanisms and temperatures of ionic liquids. Thermochimica Acta 2007;465(1-2):40-47. https://doi.org/10.1016/j.tca.2007.09.003

Forsyth S, Batten S, Dai Q, MacFarlane D. Ionic Liquids Based on Imidazolium and Pyrrolidinium Salts of the Tricyanomethanide Anion. Aust. J. Chem. 2004;57(2):121. https://doi.org/10.1071/ch03245

Heym F, Etzold B, Kern C, Jess A. Analysis of evaporation and thermal decomposition of ionic liquids by thermogravimetrical analysis at ambient pressure and high vacuum. Green Chemistry 2011;13(6):1453. https://doi.org/10.1039/c0gc00876a

Verevkin S, Zaitsau D, Emel’yanenko V, Yermalayeu A, Schick C, Liu H, Maginn E, Bulut S, Krossing I, Kalb R. Making Sense of Enthalpy of Vaporization Trends for Ionic Liquids: New Experimental and Simulation Data Show a Simple Linear Relationship and Help Reconcile Previous Data. The Journal of Physical Chemistry B 2013;117(21):6473-6486. https://doi.org/10.1021/jp311429r

Kosmulski M, Gustafsson J, Rosenholm J. Thermal stability of low temperature ionic liquids revisited. Thermochimica Acta 2004;412(1-2):47-53. https://doi.org/10.1016/j.tca.2003.08.022

Baranyai K, Deacon G, MacFarlane D, Pringle J, Scott J. Thermal Degradation of Ionic Liquids at Elevated Temperatures. Aust. J. Chem. 2004;57(2):145. https://doi.org/10.1071/ch03221

Del Sesto R, McCleskey T, Macomber C, Ott K, Koppisch A, Baker G, Burrell A. Limited thermal stability of imidazolium and pyrrolidinium ionic liquids. Thermochimica Acta 2009;491(1-2):118-120. https://doi.org/10.1016/j.tca.2009.02.023

Wooster T, Johanson K, Fraser K, MacFarlane D, Scott J. Thermal degradation of cyano containing ionic liquids. Green Chemistry 2006;8(8):691. https://doi.org/10.1039/b606395k

Zhou Q, Henderson W, Appetecchi G, Montanino M, Passerini S. Physical and Electrochemical Properties of N -Alkyl- N -methylpyrrolidinium Bis(fluorosulfonyl)imide Ionic Liquids: PY 13 FSI and PY 14 FSI . The Journal of Physical Chemistry B 2008;112(43):13577-13580. https://doi.org/10.1021/jp805419f

Chen Z, Liu S, Li Z, Zhang Q, Deng Y. Dialkoxy functionalized quaternary ammonium ionic liquids as potential electrolytes and cellulose solvents. New J. Chem. 2011;35(8):1596. https://doi.org/10.1039/c1nj20062c

Yim T, Lee HY, Kim HJ, Mun J, Kim S, Oh SM, Kim YG. Synthesis and Properties of Pyrrolidinium and Piperidinium Bis(trifluoromethanesulfonyl)imide Ionic Liquids with Allyl Substituents. Bulletin of the Korean Chemical Society 2007;28(9):1567-1572. https://doi.org/10.5012/bkcs.2007.28.9.1567

Deng F, Reeder Z, Miller K. 1,3-Bis(2′-hydroxyethyl)imidazolium ionic liquids: correlating structure and properties with anion hydrogen bonding ability. Journal of Physical Organic Chemistry 2013;27(1):2-9. https://doi.org/10.1002/poc.3198

Papaiconomou N, Salminen J, Lee J, Prausnitz J. Physicochemical Properties of Hydrophobic Ionic Liquids Containing 1-Octylpyridinium, 1-Octyl-2-methylpyridinium, or 1-Octyl-4-methylpyridinium Cations. Journal of Chemical & Engineering Data 2007;52(3):833-840. https://doi.org/10.1021/je060440r

Salminen J, Papaiconomou N, Kumar R, Lee J, Kerr J, Newman J, Prausnitz J. Physicochemical properties and toxicities of hydrophobic piperidinium and pyrrolidinium ionic liquids. Fluid Phase Equilibria 2007;261(1-2):421-426. https://doi.org/10.1016/j.fluid.2007.06.031

Keil P, Kick M, König A. Long-Term Stability, Regeneration and Recycling of Imidazolium-based Ionic Liquids. Chemie Ingenieur Technik 2012;84(6):859–866. https://doi.org/10.1002/cite.201100237

Amarasekara A, Owereh O. Thermal properties of sulfonic acid group functionalized Brönsted acidic ionic liquids. J Therm Anal Calorim 2010;103(3):1027-1030. https://doi.org/10.1007/s10973-010-1101-5

Zhou Z, Takeda M, Ue M. New hydrophobic ionic liquids based on perfluoroalkyltrifluoroborate anions. Journal of Fluorine Chemistry 2004;125(3):471-476. https://doi.org/10.1016/j.jfluchem.2003.12.003

Kubota K, Nohira T, Hagiwara R. Thermal Properties of Alkali Bis(pentafluoroethylsulfonyl)amides and Their Binary Mixtures. Journal of Chemical & Engineering Data 2010;55(7):2546-2549. https://doi.org/10.1021/je900902z

Stuff J. Thermal decomposition of 1-methyl-3-ethylimidazolium chloride (MEIC)/aluminum chloride molten salts. Thermochimica Acta 1989;152(2):421-425. https://doi.org/10.1016/0040-6031(89)85409-7

Stefan C, Lemordant D, Biensan P, Siret C, Claude-Montigny B. Thermal stability and crystallization of N-alkyl-N-alkyl′-pyrrolidinium imides. J Therm Anal Calorim 2010;102(2):685-693. https://doi.org/10.1007/s10973-010-0865-y

Krause L, Lamanna W, Summerfield J, Engle M, Korba G, Loch R, Atanasoski R. Corrosion of aluminum at high voltages in non-aqueous electrolytes containing perfluoroalkylsulfonyl imides; new lithium salts for lithium-ion cells. Journal of Power Sources 1997;68(2):320-325. https://doi.org/10.1016/s0378-7753(97)02517-2

Xu K. Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries. Chemical Reviews 2004;104(10):4303-4418. https://doi.org/10.1021/cr030203g

Domańska U. Thermophysical properties and thermodynamic phase behavior of ionic liquids. Thermochimica Acta 2006;448(1):19-30. https://doi.org/10.1016/j.tca.2006.06.018

Tsunashima K, Kodama S, Sugiya M, Kunugi Y. Physical and electrochemical properties of room-temperature dicyanamide ionic liquids based on quaternary phosphonium cations. Electrochimica Acta 2010;56(2):762-766. https://doi.org/10.1016/j.electacta.2010.08.106

MacFarlane D, Forsyth S, Golding J, Deacon G. Ionic liquids based on imidazolium, ammonium and pyrrolidinium salts of the dicyanamide anion. Green Chemistry 2002;4(5):444-448. https://doi.org/10.1039/b205641k

Holbrey J, Reichert W, Swatloski R, Broker G, Pitner W, Seddon K, Rogers R. Efficient, halide free synthesis of new, low cost ionic liquids: 1,3-dialkylimidazolium salts containing methyl- and ethyl-sulfate anions. Green Chemistry 2002;4(5):407-413. https://doi.org/10.1039/b204469b

Zhou Z, Takeda M, Ue M. Novel electrolyte salts based on perfluoroalkyltrifluoroborate anions. Journal of Fluorine Chemistry 2003;123(1):127-131. https://doi.org/10.1016/s0022-1139(03)00111-8

Yang H, Zhuang G, Ross P. Thermal stability of LiPF6 salt and Li-ion battery electrolytes containing LiPF6. Journal of Power Sources 2006;161(1):573-579. https://doi.org/10.1016/j.jpowsour.2006.03.058

Kamavaram V, Reddy R. Thermal stabilities of di-alkylimidazolium chloride ionic liquids. International Journal of Thermal Sciences 2008;47(6):773-777. https://doi.org/10.1016/j.ijthermalsci.2007.06.012

Blesic M, Swadźba-Kwaśny M, Belhocine T, Gunaratne H, Lopes J, Gomes M, Pádua A, Seddon K, Rebelo L. 1-Alkyl-3-methylimidazolium alkanesulfonate ionic liquids, [CnH2n+1mim][CkH2k+1SO3]: synthesis and physicochemical properties. Phys. Chem. Chem. Phys. 2009;11(39):8939. https://doi.org/10.1039/b910177m

Keating M, Gao F, Ramsey J. TGA-MS study of the decomposition of phosphorus-containing ionic liquids trihexyl(tetradecyl)phosphonium decanoate and trihexyltetradecylphosphonium bis[(trifluoromethyl)sulfonyl] amide. J Therm Anal Calorim 2011;106(1):207-211. https://doi.org/10.1007/s10973-011-1528-3

Reiter J, Jeremias S, Paillard E, Winter M, Passerini S. Fluorosulfonyl-(trifluoromethanesulfonyl)imide ionic liquids with enhanced asymmetry. Phys. Chem. Chem. Phys. 2013;15(7):2565. https://doi.org/10.1039/c2cp43066e

Burrell A, Sesto R, Baker S, McCleskey T, Baker G. The large scale synthesis of pure imidazolium and pyrrolidinium ionic liquids. Green Chemistry 2007;9(5):449. https://doi.org/10.1039/b615950h

Holbrey J, Seddon K, Wareing R. A simple colorimetric method for the quality control of 1-alkyl-3-methylimidazolium ionic liquid precursors. Green Chemistry 2001;3(1):33-36. https://doi.org/10.1039/b009459p

Seddon K, Stark A, Torres M. Influence of chloride, water, and organic solvents on the physical properties of ionic liquids. Pure and Applied Chemistry 2000;72(12):. https://doi.org/10.1351/pac200072122275

Appetecchi G, Montanino M, Zane D, Carewska M, Alessandrini F, Passerini S. Effect of the alkyl group on the synthesis and the electrochemical properties of N-alkyl-N-methyl-pyrrolidinium bis(trifluoromethanesulfonyl)imide ionic liquids. Electrochimica Acta 2009;54(4):1325-1332. https://doi.org/10.1016/j.electacta.2008.09.011

Appetecchi G, Scaccia S, Tizzani C, Alessandrini F, Passerini S. Synthesis of Hydrophobic Ionic Liquids for Electrochemical Applications. Journal of The Electrochemical Society 2006;153(9):A1685. https://doi.org/10.1149/1.2213420

Gardas R, Freire M, Carvalho P, Marrucho I, Fonseca I, Ferreira A, Coutinho J. High-Pressure Densities and Derived Thermodynamic Properties of Imidazolium-Based Ionic Liquids. Journal of Chemical & Engineering Data 2007;52(1):80-88. https://doi.org/10.1021/je060247x

Matsumoto H, Kageyama H, Miyazaki Y. Room temperature ionic liquids based on small aliphatic ammonium cations and asymmetric amide anions. Chemical Communications 2002;(16):1726-1727. https://doi.org/10.1039/b204046h

Matsumoto H, Matsuda T, Miyazaki Y. Room Temperature Molten Salts Based on Trialkylsulfonium Cations and Bis(trifluoromethylsulfonyl)imide.. Chem. Lett. 2000;(12):1430-1431. https://doi.org/10.1246/cl.2000.1430

Swadźba-Kwaśny M, Chancelier L, Ng S, Manyar H, Hardacre C, Nockemann P. Facile in situ synthesis of nanofluids based on ionic liquids and copper oxide clusters and nanoparticles. Dalton Trans. 2012;41(1):219-227. https://doi.org/10.1039/c1dt11578b

OHTANI H, ISHIMURA S, KUMAI M. Thermal Decomposition Behaviors of Imidazolium-type Ionic Liquids Studied by Pyrolysis-Gas Chromatography. Analytical Sciences 2008;24(10):1335-1340. https://doi.org/10.2116/analsci.24.1335

Chambreau S, Boatz J, Vaghjiani G, Koh C, Kostko O, Golan A, Leone S. Thermal Decomposition Mechanism of 1-Ethyl-3-methylimidazolium Bromide Ionic Liquid. J. Phys. Chem. A 2012;116(24):5867-5876. https://doi.org/10.1021/jp209389d

Wasserscheid P and Welton T, Ionic liquids in synthesis, 1st Ed., Wiley-VCH, Weinheim, 2003 ISBN: 978-3-527-60544-6

Sowmiah S, Srinivasadesikan V, Tseng M, Chu Y. On the Chemical Stabilities of Ionic Liquids. Molecules 2009;14(9):3780-3813. https://doi.org/10.3390/molecules14093780

Montanino M, Carewska M, Alessandrini F, Passerini S, Appetecchi G. The role of the cation aliphatic side chain length in piperidinium bis(trifluoromethansulfonyl)imide ionic liquids. Electrochimica Acta 2011;57:153-159. https://doi.org/10.1016/j.electacta.2011.03.089

Hallett J, Welton T. Room-Temperature Ionic Liquids: Solvents for Synthesis and Catalysis. 2. Chemical Reviews 2011;111(5):3508-3576. https://doi.org/10.1021/cr1003248

Bazito F, Kawano Y, Torresi R. Synthesis and characterization of two ionic liquids with emphasis on their chemical stability towards metallic lithium. Electrochimica Acta 2007;52(23):6427-6437. https://doi.org/10.1016/j.electacta.2007.04.064

De Vos N, Maton C, Stevens C. Electrochemical Stability of Ionic Liquids: General Influences and Degradation Mechanisms. ChemElectroChem 2014;1(8):1258-1270. https://doi.org/10.1002/celc.201402086

Ye Y, Elabd Y. Relative Chemical Stability of Imidazolium-Based Alkaline Anion Exchange Polymerized Ionic Liquids. Macromolecules 2011;44(21):8494-8503. https://doi.org/10.1021/ma201864u

Canongia Lopes J, Pádua A. Nanostructural Organization in Ionic Liquids. The Journal of Physical Chemistry B 2006;110(7):3330-3335. https://doi.org/10.1021/jp056006y

Triolo A, Russina O, Bleif H, Di Cola E. Nanoscale Segregation in Room Temperature Ionic Liquids † . The Journal of Physical Chemistry B 2007;111(18):4641-4644. https://doi.org/10.1021/jp067705t

Köddermann T, Paschek D, Ludwig R. Ionic Liquids: Dissecting the Enthalpies of Vaporization. ChemPhysChem 2008;9(4):549-555. https://doi.org/10.1002/cphc.200700814

López-Martin I, Burello E, Davey P, Seddon K, Rothenberg G. Anion and Cation Effects on Imidazolium Salt Melting Points: A Descriptor Modelling Study. ChemPhysChem 2007;8(5):690-695. https://doi.org/10.1002/cphc.200600637

Rocha M, Neves C, Freire M, Russina O, Triolo A, Coutinho J, Santos L. Alkylimidazolium Based Ionic Liquids: Impact of Cation Symmetry on Their Nanoscale Structural Organization. The Journal of Physical Chemistry B 2013;117(37):10889-10897. https://doi.org/10.1021/jp406374a

Rocha M, Lima C, Gomes L, Schröder B, Coutinho J, Marrucho I, Esperança J, Rebelo L, Shimizu K, Lopes J, Santos L. High-Accuracy Vapor Pressure Data of the Extended [C n C 1 im][Ntf 2 ] Ionic Liquid Series: Trend Changes and Structural Shifts . The Journal of Physical Chemistry B 2011;115(37):10919-10926. https://doi.org/10.1021/jp2049316

Rocha M, Bastos M, Coutinho J, Santos L. Heat capacities at 298.15K of the extended [CnC1im][Ntf2] ionic liquid series. The Journal of Chemical Thermodynamics 2012;53:140-143. https://doi.org/10.1016/j.jct.2012.04.025

Vieira N, Reis P, Shimizu K, Cortes O, Marrucho I, Araújo J, Esperança J, Lopes J, Pereiro A, Rebelo L. A thermophysical and structural characterization of ionic liquids with alkyl and perfluoroalkyl side chains. RSC Adv. 2015;5(80):65337-65350. https://doi.org/10.1039/c5ra13869h

Nair V, Bindu S, Sreekumar V. N-Heterocyclic Carbenes: Reagents, Not Just Ligands!. Angewandte Chemie International Edition 2004;43(39):5130-5135. https://doi.org/10.1002/anie.200301714

Handy S, Okello M. Homogeneous Supported Synthesis Using Ionic Liquid Supports: Tunable Separation Properties. The Journal of Organic Chemistry 2005;70(7):2874-2877. https://doi.org/10.1021/jo047807k

Hunt P. Why Does a Reduction in Hydrogen Bonding Lead to an Increase in Viscosity for the 1-Butyl-2,3-dimethyl-imidazolium-Based Ionic Liquids? † . The Journal of Physical Chemistry B 2007;111(18):4844-4853. https://doi.org/10.1021/jp067182p

Carlton T, Winkle R. Calculations of electrostatic intermolecular repulsion in tetrafluoromethane: evidence for a ‘hedgehog’ contribution to perfluoroalkane volatility. Journal of Fluorine Chemistry 1993;65(1-2):1-6. https://doi.org/10.1016/s0022-1139(00)80463-7

Yoshida Y, Saito G. Ionic liquids based on diethylmethyl(2-methoxyethyl)ammonium cations and bis(perfluoroalkanesulfonyl)amide anions: influence of anion structure on liquid properties. Phys. Chem. Chem. Phys. 2011;13(45):20302. https://doi.org/10.1039/c1cp21783f

Smith G, Borodin O, Magda J, Boyd R, Wang Y, Bara J, Miller S, Gin D, Noble R. A comparison of fluoroalkyl-derivatized imidazolium:TFSI and alkyl-derivatized imidazolium:TFSI ionic liquids: a molecular dynamics simulation study. Phys. Chem. Chem. Phys. 2010;12(26):7064. https://doi.org/10.1039/c001387k

Russina O, Lo Celso F, Di Michiel M, Passerini S, Appetecchi G, Castiglione F, Mele A, Caminiti R, Triolo A. Mesoscopic structural organization in triphilic room temperature ionic liquids. Faraday Discuss. 2013;167:499. https://doi.org/10.1039/c3fd00056g

Mizumo T, Marwanta E, Matsumi N, Ohno H. Allylimidazolium Halides as Novel Room Temperature Ionic Liquids. Chem. Lett. 2004;33(10):1360-1361. https://doi.org/10.1246/cl.2004.1360

Schneider S, Drake G, Hall L, Hawkins T, Rosander M. Alkene- and Alkyne-substituted Methylimidazolium Bromides: Structural Effects and Physical Properties. Zeitschrift für anorganische und allgemeine Chemie 2007;633(10):1701-1707. https://doi.org/10.1002/zaac.200700234

Palgunadi J, Hong S, Lee J, Lee H, Lee S, Cheong M, Kim H. Correlation between Hydrogen Bond Basicity and Acetylene Solubility in Room Temperature Ionic Liquids. The Journal of Physical Chemistry B 2011;115(5):1067-1074. https://doi.org/10.1021/jp108351f

Drab D, Smiglak M, Shamshina J, Kelley S, Schneider S, Hawkins T, Rogers R. Synthesis of N-cyanoalkyl-functionalized imidazolium nitrate and dicyanamide ionic liquids with a comparison of their thermal properties for energetic applications. New J. Chem. 2011;35(8):1701. https://doi.org/10.1039/c0nj00889c

Monteiro M, Camilo F, Ribeiro M, Torresi R. Ether-Bond-Containing Ionic Liquids and the Relevance of the Ether Bond Position to Transport Properties. The Journal of Physical Chemistry B 2010;114(39):12488-12494. https://doi.org/10.1021/jp104419k

Schrekker H, Silva D, Gelesky M, Stracke M, Schrekker C, Gonçalves R, Dupont J. Preparation, cation-anion interactions and physicochemical properties of ether-functionalized imidazolium ionic liquids. J. Braz. Chem. Soc. 2008;19(3):426-433. https://doi.org/10.1590/s0103-50532008000300009

Zhou Z, Matsumoto H, Tatsumi K. Low-Melting, Low-Viscous, Hydrophobic Ionic Liquids: 1-Alkyl(Alkyl Ether)-3-methylimidazolium Perfluoroalkyltrifluoroborate. Chemistry - A European Journal 2004;10(24):6581-6591. https://doi.org/10.1002/chem.200400533

Zhou Z, Matsumoto H, Tatsumi K. Cyclic Quaternary Ammonium Ionic Liquids with Perfluoroalkyltrifluoroborates: Synthesis, Characterization, and Properties. Chemistry - A European Journal 2006;12(8):2196-2212. https://doi.org/10.1002/chem.200500930

Fang S, Zhang Z, Jin Y, Yang L, Hirano S, Tachibana K, Katayama S. New functionalized ionic liquids based on pyrrolidinium and piperidinium cations with two ether groups as electrolytes for lithium battery. Journal of Power Sources 2011;196(13):5637-5644. https://doi.org/10.1016/j.jpowsour.2011.02.047

Katsyuba S, Vener M, Zvereva E, Fei Z, Scopelliti R, Laurenczy G, Yan N, Paunescu E, Dyson P. How Strong Is Hydrogen Bonding in Ionic Liquids? Combined X-ray Crystallographic, Infrared/Raman Spectroscopic, and Density Functional Theory Study. The Journal of Physical Chemistry B 2013;117(30):9094-9105. https://doi.org/10.1021/jp405255w

Shimizu K, Bernardes C, Triolo A, Canongia Lopes J. Nano-segregation in ionic liquids: scorpions and vanishing chains. Phys. Chem. Chem. Phys. 2013;15(38):16256. https://doi.org/10.1039/c3cp52357h

Luo S, Zhang S, Wang Y, Xia A, Zhang G, Du X, Xu D. Complexes of Ionic Liquids with Poly(ethylene glycol)s. The Journal of Organic Chemistry 2010;75(6):1888-1891. https://doi.org/10.1021/jo902521w

Passerini S, Appetecchi G. Toward more environmentally friendly routes to high purity ionic liquids. MRS Bull. 2013;38(07):540-547. https://doi.org/10.1557/mrs.2013.155

Magna L, Chauvin Y, Niccolai G, Basset J. The Importance of Imidazolium Substituents in the Use of Imidazolium-Based Room-Temperature Ionic Liquids as Solvents for Palladium-Catalyzed Telomerization of Butadiene with Methanol. Organometallics 2003;22(22):4418-4425. https://doi.org/10.1021/om021057s

Srour H, Rouault H, Santini C, Chauvin Y. A silver and water free metathesis reaction: a route to ionic liquids. Green Chemistry 2013;15(5):1341. https://doi.org/10.1039/c3gc37034h