Palladium nanoparticles in ionic liquids stabilized by mono-phosphines. Catalytic applications
DOI:
https://doi.org/10.17721/fujcV4I1P37-50Keywords:
ionic liquids, palladium nanoparticles, mono-phosphines, C-C cross-coupling, hydrogenationAbstract
Palladium nanoparticles generated from organometallic complexes in the presence of functionalized mono-phosphines (L1-L3), in both THF and imidazolium-based ionic liquids (ImILs), were successfully synthesized. Depending on the phosphine and solvent nature, PdNPs with different extent of aggregation were observed. Actually, the ligand L1, P(CH2CH2CH2Ph)3, led to small and well-dispersed nanoparticles in both ILs, [BMI][PF6] and [EMI][HP(O)2OMe], in contrast to more agglomerated PdNPs obtained in THF. PdNPs in ILs were catalytically active and chemoselective in C-C cross-coupling (Suzuki-Miyaura and Heck-Mizoroki) and hydrogenation reactions. Well-defined Pd(0) and Pd(II) organometallic complexes containing L1, [PdCl2(L1)2] and [Pd(ma)(L1)2], were also prepared for comparative purposes.
Supplementary informationReferences
Favier I, Madec D, Gómez M. Metallic Nanoparticles in Ionic Liquids - Applications in Catalysis. Nanomaterials in Catalysis 2012:203-249. https://doi.org/10.1002/9783527656875.ch5
Zhang Q, Zhang S, Deng Y. Recent advances in ionic liquid catalysis. Green Chemistry 2011;13(10):2619. https://doi.org/10.1039/c1gc15334j
Dupont J, Scholten J. On the structural and surface properties of transition-metal nanoparticles in ionic liquids. Chemical Society Reviews 2010;39(5):1780. https://doi.org/10.1039/b822551f
Olivier-Bourbigou H, Magna L, Morvan D. Ionic liquids and catalysis: Recent progress from knowledge to applications. Applied Catalysis A: General 2010;373(1-2):1-56. https://doi.org/10.1016/j.apcata.2009.10.008
Antonietti M, Kuang D, Smarsly B, Zhou Y. Ionic Liquids for the Convenient Synthesis of Functional Nanoparticles and Other Inorganic Nanostructures. Angewandte Chemie International Edition 2004;43(38):4988-4992. https://doi.org/10.1002/anie.200460091
Finke RG. Metal Nanoparticles: Synthesis, Characterization, and Applications Edited by Daniel L. Feldheim (North Carolina State University) and Colby A. Foss, Jr. (Georgetown University). Marcel Dekker, Inc.: New York and Basel. 2002. x+ 338 pp. $150.00. ISBN: 0-8247-0604-8. pp 17-54.
Cassol C, Umpierre A, Machado G, Wolke S, Dupont J. The Role of Pd Nanoparticles in Ionic Liquid in the Heck Reaction. J. Am. Chem. Soc. 2005;127(10):3298-3299. https://doi.org/10.1021/ja0430043
Durand J, Teuma E, Malbosc F, Kihn Y, Gómez M. Palladium nanoparticles immobilized in ionic liquid: An outstanding catalyst for the Suzuki C–C coupling. Catalysis Communications 2008;9(2):273-275. https://doi.org/10.1016/j.catcom.2007.06.015
Gavia D, Shon Y. Catalytic Properties of Unsupported Palladium Nanoparticle Surfaces Capped with Small Organic Ligands. ChemCatChem 2015;7(6):892-900. https://doi.org/10.1002/cctc.201402865
Jansat S, Gómez M, Philippot K, Muller G, Guiu E, Claver C, Castillón S, Chaudret B. A Case for Enantioselective Allylic Alkylation Catalyzed by Palladium Nanoparticles. J. Am. Chem. Soc. 2004;126(6):1592-1593. https://doi.org/10.1021/ja036132k
Favier I, Gómez M, Muller G, Axet M, Castillón S, Claver C, Jansat S, Chaudret B, Philippot K. Palladium Catalytic Species Containing Chiral Phosphites: Towards a Discrimination between Molecular and Colloidal Catalysts. Advanced Synthesis & Catalysis 2007;349(16):2459-2469. https://doi.org/10.1002/adsc.200700200
Tamura M, Fujihara H. Chiral Bisphosphine BINAP-Stabilized Gold and Palladium Nanoparticles with Small Size and Their Palladium Nanoparticle-Catalyzed Asymmetric Reaction. J. Am. Chem. Soc. 2003;125(51):15742-15743. https://doi.org/10.1021/ja0369055
López-Vinasco A, Guerrero-Ríos I, Favier I, Pradel C, Teuma E, Gómez M, Martin E. Tuning the hydrogen donor/acceptor behavior of ionic liquids in Pd-catalyzed multi-step reactions. Catalysis Communications 2015;63:56-61. https://doi.org/10.1016/j.catcom.2014.10.011
López-Vinasco A, Favier I, Pradel C, Huerta L, Guerrero-Ríos I, Teuma E, Gómez M, Martin E. Unexpected bond activations promoted by palladium nanoparticles. Dalton Transactions 2014;43(24):9038. https://doi.org/10.1039/c3dt53649a
Wu L, Li B, Huang Y, Zhou H, He Y, Fan Q. Phosphine Dendrimer-Stabilized Palladium Nanoparticles, a Highly Active and Recyclable Catalyst for the Suzuki−Miyaura Reaction and Hydrogenation. Org. Lett. 2006;8(16):3605-3608. https://doi.org/10.1021/ol0614424
Bartik T, Bartik B, Hanson B, Guo I, Toth I. Water-soluble electron-donating phosphines: sulfonation of tris(.omega.-phenylalkyl)phosphines. Organometallics 1993;12(1):164-170. https://doi.org/10.1021/om00025a029
Frisch M, Heal H, Mackle H, Madden I. 165. Bonding and reactivity in triphenylphosphineborane. Journal of the Chemical Society (Resumed) 1965:899. https://doi.org/10.1039/jr9650000899
Ohff M. Borane Complexes of Trivalent Organophosphorus Compounds. Versatile Precursors for the Synthesis of Chiral Phosphine Ligands for Asymmetric Catalysis. Synthesis 1998;1998(10):1391-1415. https://doi.org/10.1055/s-1998-2166
Habib M, Trujillo H, Alexander C, Storhoff B. Syntheses, characterization, and properties of palladium(II) complexes containing bidentate phosphine-nitrile or phosphine-imidate ligands. Inorganic Chemistry 1985;24(15):2344-2349. https://doi.org/10.1021/ic00209a005
Martín G, Ocando-Mavarez E, Osorio A, Laya M, Canestrari M. Gas phase thermolysis of allylphosphines, kinetic study. Heteroatom Chem. 1992;3(4):395-401. https://doi.org/10.1002/hc.520030413
Amiens C, Chaudret B, Ciuculescu-Pradines D, Collière V, Fajerwerg K, Fau P, Kahn M, Maisonnat A, Soulantica K, Philippot K. Organometallic approach for the synthesis of nanostructures. New J. Chem. 2013;37(11):3374. https://doi.org/10.1039/c3nj00650f
Favier I, Teuma E, Gómez M. Palladium and ruthenium nanoparticles: Reactivity and coordination at the metallic surface. Comptes Rendus Chimie 2009;12(5):533-545. https://doi.org/10.1016/j.crci.2008.10.017
Favier I, Massou S, Teuma E, Philippot K, Chaudret B, Gómez M. A new and specific mode of stabilization of metallic nanoparticles. Chemical Communications 2008;(28):3296. https://doi.org/10.1039/b804402c
Favier I, Lavedan P, Massou S, Teuma E, Philippot K, Chaudret B, Gómez M. Hydrogenation Processes at the Surface of Ruthenium Nanoparticles: A NMR Study. Topics in Catalysis 2013;56(13-14):1253-1261. https://doi.org/10.1007/s11244-013-0092-4
Dupont J. On the solid, liquid and solution structural organization of imidazolium ionic liquids. J. Braz. Chem. Soc. 2004;15(3):341-350. https://doi.org/10.1590/s0103-50532004000300002
Kim S, Park J, Jang Y, Chung Y, Hwang S, Hyeon T, Kim Y. Synthesis of Monodisperse Palladium Nanoparticles. Nano Letters 2003;3(9):1289-1291. https://doi.org/10.1021/nl0343405
Teranishi T, Miyake M. Size Control of Palladium Nanoparticles and Their Crystal Structures. Chemistry of Materials 1998;10(2):594-600. https://doi.org/10.1021/cm9705808
Habib M, Trujillo H, Alexander C, Storhoff B. Syntheses, characterization, and properties of palladium(II) complexes containing bidentate phosphine-nitrile or phosphine-imidate ligands. Inorganic Chemistry 1985;24(15):2344-2349. https://doi.org/10.1021/ic00209a005
Kluwer A, Elsevier C, Bühl M, Lutz M, Spek A. Zero-Valent Palladium Complexes with Monodentate Nitrogen σ-Donor Ligands. Angewandte Chemie International Edition 2003;42(30):3501-3504. https://doi.org/10.1002/anie.200351189
King RB, Crabtree RH, Lukehart CM, Atwood DA, Scott RA, Eds. Encyclopedia of Inorganic Chemistry, John Wiley & Sons, Ltd, Chichester, UK, 2006. ISBN: 9780470862100. https://doi.org/10.1002/0470862106
Bratko I, Mallet-Ladeira S, Teuma E, Gómez M. Heteropolymetallic Complexes Linked to a 9,10-Dihydroanthracenyl Frame. Ruthenium as Active Spectator for Palladium Reactivity. Organometallics 2014;33(7):1812-1819. https://doi.org/10.1021/om5001502
de Hoog P, Gamez P, Mutikainen I, Turpeinen U, Reedijk J. An Aromatic Anion Receptor: Anion-? Interactions do Exist. Angewandte Chemie International Edition 2004;43(43):5815-5817. https://doi.org/10.1002/anie.200460486
Climent M, Corma A, Iborra S, Mifsud M. Heterogeneous Palladium Catalysts for a New One-Pot Chemical Route in the Synthesis of Fragrances Based on the Heck Reaction. Advanced Synthesis & Catalysis 2007;349(11-12):1949-1954. https://doi.org/10.1002/adsc.200700026
Jansat S, Durand J, Favier I, Malbosc F, Pradel C, Teuma E, Gómez M. A Single Catalyst for Sequential Reactions: Dual Homogeneous and Heterogeneous Behavior of Palladium Nanoparticles in Solution. ChemCatChem 2009;1(2):244-246. https://doi.org/10.1002/cctc.200900127
Sanhes D, Raluy E, Rétory S, Saffon N, Teuma E, Gómez M. Unexpected activation of carbon–bromide bond promoted by palladium nanoparticles in Suzuki C–C couplings. Dalton Transactions 2010;39(40):9719. https://doi.org/10.1039/c0dt00201a
Roucoux A, Schulz J, Patin H. Reduced Transition Metal Colloids: A Novel Family of Reusable Catalysts?. Chemical Reviews 2002;102(10):3757-3778. https://doi.org/10.1021/cr010350j
Phan N, Van Der Sluys M, Jones C. On the Nature of the Active Species in Palladium Catalyzed Mizoroki–Heck and Suzuki–Miyaura Couplings – Homogeneous or Heterogeneous Catalysis, A Critical Review. Advanced Synthesis & Catalysis 2006;348(6):609-679. https://doi.org/10.1002/adsc.200505473
de Vries J. A unifying mechanism for all high-temperature Heck reactions. The role of palladium colloids and anionic species. Dalton Trans. 2006;(3):421-429. https://doi.org/10.1039/b506276b
Rodríguez-Pérez L, Pradel C, Serp P, Gómez M, Teuma E. Supported Ionic Liquid Phase Containing Palladium Nanoparticles on Functionalized Multiwalled Carbon Nanotubes: Catalytic Materials for Sequential Heck Coupling/Hydrogenation Process. ChemCatChem 2011;3(4):749-754. https://doi.org/10.1002/cctc.201000321
McGuinness D, Yates B, Cavell K. Unprecedented C–H bond oxidative addition of the imidazolium cation to Pt0: a combined density functional analysis and experimental study. Chemical Communications 2001;(4):355-356. https://doi.org/10.1039/b009674l
Clement N, Cavell K, Jones C, Elsevier C. Oxidative Addition of Imidazolium Salts to Ni0 and Pd0: Synthesis and Structural Characterization of Unusually Stable Metal–Hydride Complexes. Angewandte Chemie International Edition 2004;43:1277. https://doi.org/10.1002/anie.200353409
Dupont J, Spencer J. On the Noninnocent Nature of 1,3-Dialkylimidazolium Ionic Liquids. Angewandte Chemie International Edition 2004;43(40):5296-5297. https://doi.org/10.1002/anie.200460431
Raluy E, Favier I, López-Vinasco A, Pradel C, Martin E, Madec D, Teuma E, Gómez M. A smart palladium catalyst in ionic liquid for tandem processes. Phys. Chem. Chem. Phys. 2011;13(30):13579. https://doi.org/10.1039/c1cp20619b
Armarego W, Chai C. Preface to the Fifth Edition. Purification of Laboratory Chemicals , 5th Edition, Butterworth-Heinemann, Burlington, 2003. https://doi.org/10.1016/b978-075067571-0/50000-4
SAINT-NT; Bruker AXS Inc.:Madison, Wisconsin, 2000.
SADABS, Program for data correction, Bruker−AXS.
Sheldrick G. A short history of SHELX . Acta Cryst Sect A 2007;64(1):112-122. https://doi.org/10.1107/s0108767307043930
Downloads
Additional Files
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).