Palladium nanoparticles in ionic liquids stabilized by mono-phosphines. Catalytic applications

Gustavo Chacón, Christian Pradel, Nathalie Saffon-Merceron, David Madec, Montserrat Gomez


Palladium nanoparticles generated from organometallic complexes in the presence of functionalized mono-phosphines (L1-L3), in both THF and imidazolium-based ionic liquids (ImILs), were successfully synthesized. Depending on the phosphine and solvent nature, PdNPs with different extent of aggregation were observed. Actually, the ligand L1, P(CH2CH2CH2Ph)3, led to small and well-dispersed nanoparticles in both ILs, [BMI][PF6] and [EMI][HP(O)2OMe], in contrast to more agglomerated PdNPs obtained in THF. PdNPs in ILs were catalytically active and chemoselective in C-C cross-coupling (Suzuki-Miyaura and Heck-Mizoroki) and hydrogenation reactions. Well-defined Pd(0) and Pd(II) organometallic complexes containing L1, [PdCl2(L1)2] and [Pd(ma)(L1)2], were also prepared for comparative purposes. 

Supplementary information


ionic liquids; palladium nanoparticles; mono-phosphines; C-C cross-coupling; hydrogenation

Full Text:



Favier I, Madec D, Gómez M. Metallic Nanoparticles in Ionic Liquids - Applications in Catalysis. Nanomaterials in Catalysis 2012:203-249.

Zhang Q, Zhang S, Deng Y. Recent advances in ionic liquid catalysis. Green Chemistry 2011;13(10):2619.

Dupont J, Scholten J. On the structural and surface properties of transition-metal nanoparticles in ionic liquids. Chemical Society Reviews 2010;39(5):1780.

Olivier-Bourbigou H, Magna L, Morvan D. Ionic liquids and catalysis: Recent progress from knowledge to applications. Applied Catalysis A: General 2010;373(1-2):1-56.

Antonietti M, Kuang D, Smarsly B, Zhou Y. Ionic Liquids for the Convenient Synthesis of Functional Nanoparticles and Other Inorganic Nanostructures. Angewandte Chemie International Edition 2004;43(38):4988-4992.

Finke RG. Metal Nanoparticles: Synthesis, Characterization, and Applications Edited by Daniel L. Feldheim (North Carolina State University) and Colby A. Foss, Jr. (Georgetown University). Marcel Dekker, Inc.: New York and Basel. 2002. x+ 338 pp. $150.00. ISBN: 0-8247-0604-8. pp 17-54.

Cassol C, Umpierre A, Machado G, Wolke S, Dupont J. The Role of Pd Nanoparticles in Ionic Liquid in the Heck Reaction. J. Am. Chem. Soc. 2005;127(10):3298-3299.

Durand J, Teuma E, Malbosc F, Kihn Y, Gómez M. Palladium nanoparticles immobilized in ionic liquid: An outstanding catalyst for the Suzuki C–C coupling. Catalysis Communications 2008;9(2):273-275.

Gavia D, Shon Y. Catalytic Properties of Unsupported Palladium Nanoparticle Surfaces Capped with Small Organic Ligands. ChemCatChem 2015;7(6):892-900.

Jansat S, Gómez M, Philippot K, Muller G, Guiu E, Claver C, Castillón S, Chaudret B. A Case for Enantioselective Allylic Alkylation Catalyzed by Palladium Nanoparticles. J. Am. Chem. Soc. 2004;126(6):1592-1593.

Favier I, Gómez M, Muller G, Axet M, Castillón S, Claver C, Jansat S, Chaudret B, Philippot K. Palladium Catalytic Species Containing Chiral Phosphites: Towards a Discrimination between Molecular and Colloidal Catalysts. Advanced Synthesis & Catalysis 2007;349(16):2459-2469.

Tamura M, Fujihara H. Chiral Bisphosphine BINAP-Stabilized Gold and Palladium Nanoparticles with Small Size and Their Palladium Nanoparticle-Catalyzed Asymmetric Reaction. J. Am. Chem. Soc. 2003;125(51):15742-15743.

López-Vinasco A, Guerrero-Ríos I, Favier I, Pradel C, Teuma E, Gómez M, Martin E. Tuning the hydrogen donor/acceptor behavior of ionic liquids in Pd-catalyzed multi-step reactions. Catalysis Communications 2015;63:56-61.

López-Vinasco A, Favier I, Pradel C, Huerta L, Guerrero-Ríos I, Teuma E, Gómez M, Martin E. Unexpected bond activations promoted by palladium nanoparticles. Dalton Transactions 2014;43(24):9038.

Wu L, Li B, Huang Y, Zhou H, He Y, Fan Q. Phosphine Dendrimer-Stabilized Palladium Nanoparticles, a Highly Active and Recyclable Catalyst for the Suzuki−Miyaura Reaction and Hydrogenation. Org. Lett. 2006;8(16):3605-3608.

Bartik T, Bartik B, Hanson B, Guo I, Toth I. Water-soluble electron-donating phosphines: sulfonation of tris(.omega.-phenylalkyl)phosphines. Organometallics 1993;12(1):164-170.

Frisch M, Heal H, Mackle H, Madden I. 165. Bonding and reactivity in triphenylphosphineborane. Journal of the Chemical Society (Resumed) 1965:899.

Ohff M. Borane Complexes of Trivalent Organophosphorus Compounds. Versatile Precursors for the Synthesis of Chiral Phosphine Ligands for Asymmetric Catalysis. Synthesis 1998;1998(10):1391-1415.

Habib M, Trujillo H, Alexander C, Storhoff B. Syntheses, characterization, and properties of palladium(II) complexes containing bidentate phosphine-nitrile or phosphine-imidate ligands. Inorganic Chemistry 1985;24(15):2344-2349.

Martín G, Ocando-Mavarez E, Osorio A, Laya M, Canestrari M. Gas phase thermolysis of allylphosphines, kinetic study. Heteroatom Chem. 1992;3(4):395-401.

Amiens C, Chaudret B, Ciuculescu-Pradines D, Collière V, Fajerwerg K, Fau P, Kahn M, Maisonnat A, Soulantica K, Philippot K. Organometallic approach for the synthesis of nanostructures. New J. Chem. 2013;37(11):3374.

Favier I, Teuma E, Gómez M. Palladium and ruthenium nanoparticles: Reactivity and coordination at the metallic surface. Comptes Rendus Chimie 2009;12(5):533-545.

Favier I, Massou S, Teuma E, Philippot K, Chaudret B, Gómez M. A new and specific mode of stabilization of metallic nanoparticles. Chemical Communications 2008;(28):3296.

Favier I, Lavedan P, Massou S, Teuma E, Philippot K, Chaudret B, Gómez M. Hydrogenation Processes at the Surface of Ruthenium Nanoparticles: A NMR Study. Topics in Catalysis 2013;56(13-14):1253-1261.

Dupont J. On the solid, liquid and solution structural organization of imidazolium ionic liquids. J. Braz. Chem. Soc. 2004;15(3):341-350.

Kim S, Park J, Jang Y, Chung Y, Hwang S, Hyeon T, Kim Y. Synthesis of Monodisperse Palladium Nanoparticles. Nano Letters 2003;3(9):1289-1291.

Teranishi T, Miyake M. Size Control of Palladium Nanoparticles and Their Crystal Structures. Chemistry of Materials 1998;10(2):594-600.

Habib M, Trujillo H, Alexander C, Storhoff B. Syntheses, characterization, and properties of palladium(II) complexes containing bidentate phosphine-nitrile or phosphine-imidate ligands. Inorganic Chemistry 1985;24(15):2344-2349.

Kluwer A, Elsevier C, Bühl M, Lutz M, Spek A. Zero-Valent Palladium Complexes with Monodentate Nitrogen σ-Donor Ligands. Angewandte Chemie International Edition 2003;42(30):3501-3504.

King RB, Crabtree RH, Lukehart CM, Atwood DA, Scott RA, Eds. Encyclopedia of Inorganic Chemistry, John Wiley & Sons, Ltd, Chichester, UK, 2006. ISBN: 9780470862100.

Bratko I, Mallet-Ladeira S, Teuma E, Gómez M. Heteropolymetallic Complexes Linked to a 9,10-Dihydroanthracenyl Frame. Ruthenium as Active Spectator for Palladium Reactivity. Organometallics 2014;33(7):1812-1819.

de Hoog P, Gamez P, Mutikainen I, Turpeinen U, Reedijk J. An Aromatic Anion Receptor: Anion-? Interactions do Exist. Angewandte Chemie International Edition 2004;43(43):5815-5817.

Climent M, Corma A, Iborra S, Mifsud M. Heterogeneous Palladium Catalysts for a New One-Pot Chemical Route in the Synthesis of Fragrances Based on the Heck Reaction. Advanced Synthesis & Catalysis 2007;349(11-12):1949-1954.

Jansat S, Durand J, Favier I, Malbosc F, Pradel C, Teuma E, Gómez M. A Single Catalyst for Sequential Reactions: Dual Homogeneous and Heterogeneous Behavior of Palladium Nanoparticles in Solution. ChemCatChem 2009;1(2):244-246.

Sanhes D, Raluy E, Rétory S, Saffon N, Teuma E, Gómez M. Unexpected activation of carbon–bromide bond promoted by palladium nanoparticles in Suzuki C–C couplings. Dalton Transactions 2010;39(40):9719.

Roucoux A, Schulz J, Patin H. Reduced Transition Metal Colloids: A Novel Family of Reusable Catalysts?. Chemical Reviews 2002;102(10):3757-3778.

Phan N, Van Der Sluys M, Jones C. On the Nature of the Active Species in Palladium Catalyzed Mizoroki–Heck and Suzuki–Miyaura Couplings – Homogeneous or Heterogeneous Catalysis, A Critical Review. Advanced Synthesis & Catalysis 2006;348(6):609-679.

de Vries J. A unifying mechanism for all high-temperature Heck reactions. The role of palladium colloids and anionic species. Dalton Trans. 2006;(3):421-429.

Rodríguez-Pérez L, Pradel C, Serp P, Gómez M, Teuma E. Supported Ionic Liquid Phase Containing Palladium Nanoparticles on Functionalized Multiwalled Carbon Nanotubes: Catalytic Materials for Sequential Heck Coupling/Hydrogenation Process. ChemCatChem 2011;3(4):749-754.

McGuinness D, Yates B, Cavell K. Unprecedented C–H bond oxidative addition of the imidazolium cation to Pt0: a combined density functional analysis and experimental study. Chemical Communications 2001;(4):355-356.

Clement N, Cavell K, Jones C, Elsevier C. Oxidative Addition of Imidazolium Salts to Ni0 and Pd0: Synthesis and Structural Characterization of Unusually Stable Metal–Hydride Complexes. Angewandte Chemie International Edition 2004;43:1277.

Dupont J, Spencer J. On the Noninnocent Nature of 1,3-Dialkylimidazolium Ionic Liquids. Angewandte Chemie International Edition 2004;43(40):5296-5297.

Raluy E, Favier I, López-Vinasco A, Pradel C, Martin E, Madec D, Teuma E, Gómez M. A smart palladium catalyst in ionic liquid for tandem processes. Phys. Chem. Chem. Phys. 2011;13(30):13579.

Armarego W, Chai C. Preface to the Fifth Edition. Purification of Laboratory Chemicals , 5th Edition, Butterworth-Heinemann, Burlington, 2003.

SAINT-NT; Bruker AXS Inc.:Madison, Wisconsin, 2000.

SADABS, Program for data correction, Bruker−AXS.

Sheldrick G. A short history of SHELX . Acta Cryst Sect A 2007;64(1):112-122.