Ionic liquids in catalysis: molecular and nanometric metal systems

Gustavo Chacón, Jérôme Durand, Isabelle Favier, Emmanuelle Teuma, Montserrat Gomez

Abstract

The catalyst immobilization in a liquid phase represents an attractive means to preserve high activities and selectivities, also permitting an easy recycling. To attain this goal, organic products should be extracted in a simple way from the catalytic phase leading to metal-free target compounds; for this reason, ionic liquids exhibiting high affinity for metallic species and low affinity for low polar compounds, turn into a promising medium, in particular for the synthesis of fine chemicals. In the present Accounts, we illustrate this approach through our research involving both molecular organometallic compounds and metallic nanoparticles dispersed in an ionic liquid phase.

Keywords

ionic liquids; catalysis; organometallic complexes; metallic nanoparticles; supported ionic liquid phase

Full Text:

PDF

References

Favier I, Madec D, Gómez M. Metallic Nanoparticles in Ionic Liquids - Applications in Catalysis. Nanomaterials in Catalysis 2012:203-249. https://doi.org/10.1002/9783527656875.ch5

Zhang Q, Zhang S, Deng Y. Recent advances in ionic liquid catalysis. Green Chemistry 2011;13(10):2619. https://doi.org/10.1039/c1gc15334j

Dupont J, Scholten J. On the structural and surface properties of transition-metal nanoparticles in ionic liquids. Chemical Society Reviews 2010;39(5):1780. https://doi.org/10.1039/b822551f

Olivier-Bourbigou H, Magna L, Morvan D. Ionic liquids and catalysis: Recent progress from knowledge to applications. Applied Catalysis A: General 2010;373(1-2):1-56. https://doi.org/10.1016/j.apcata.2009.10.008

Antonietti M, Kuang D, Smarsly B, Zhou Y. Ionic Liquids for the Convenient Synthesis of Functional Nanoparticles and Other Inorganic Nanostructures. Angewandte Chemie International Edition 2004;43(38):4988-4992. https://doi.org/10.1002/anie.200460091

Dupont J. On the solid, liquid and solution structural organization of imidazolium ionic liquids. J. Braz. Chem. Soc. 2004;15(3):341-350. https://doi.org/10.1590/s0103-50532004000300002

Ríos A, Hernández-Fernández F, Tomás-Alonso F, Palacios J, Gómez D, Rubio M, Víllora G. A SEM–EDX study of highly stable supported liquid membranes based on ionic liquids. Journal of Membrane Science 2007;300(1-2):88-94. https://doi.org/10.1016/j.memsci.2007.05.010

Mehnert C. Supported Ionic Liquid Catalysis. Chemistry - A European Journal 2005;11(1):50-56. https://doi.org/10.1002/chem.200400683

Rodríguez-Pérez L, Teuma E, Falqui A, Gómez M, Serp P. Supported ionic liquid phase catalysis on functionalized carbon nanotubes. Chemical Communications 2008;(35):4201. https://doi.org/10.1039/b804969f

Rodríguez-Pérez L, Coppel Y, Favier I, Teuma E, Serp P, Gómez M. Imidazolium-based ionic liquids immobilized on solid supports: effect on the structure and thermostability. Dalton Transactions 2010;39(32):7565. https://doi.org/10.1039/c0dt00397b

Jiang F, Li C, Fu H, Wang C, Guo X, Jiang Z, Wu G, Chen S. Temperature-Induced Molecular Rearrangement of an Ionic Liquid Confined in Nanospaces: An in Situ X-ray Absorption Fine Structure Study . J. Phys. Chem. C 2015;119(39):22724-22731. https://doi.org/10.1021/acs.jpcc.5b07325

Durand J, Teuma E, Gómez M. Ionic liquids as a medium for enantioselective catalysis. Comptes Rendus Chimie 2007;10(3):152-177. https://doi.org/10.1016/j.crci.2006.11.010

Prechtl M, Scholten J, Neto B, Dupont J. Application of Chiral Ionic Liquids for Asymmetric Induction in Catalysis. Current Organic Chemistry 2009;13(13):1259-1277. https://doi.org/10.2174/138527209789055153

Van Doorslaer C, Wahlen J, Mertens P, Binnemans K, De Vos D. Immobilization of molecular catalysts in supported ionic liquid phases. Dalton Transactions 2010;39(36):8377. https://doi.org/10.1039/c001285h

Qiao Y, Headley A. Ionic Liquid Immobilized Organocatalysts for Asymmetric Reactions in Aqueous Media. Catalysts 2013;3(3):709-725. https://doi.org/10.3390/catal3030709

Mendel R, Bittner F. Cell biology of molybdenum. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 2006;1763(7):621-635. https://doi.org/10.1016/j.bbamcr.2006.03.013

Brito J, Royo B, Gómez M. An overview of chiral molybdenum complexes applied in enantioselective catalysis. Catal. Sci. Technol. 2011;1(7):1109. https://doi.org/10.1039/c1cy00123j

Kollar J. Catalytic epoxidation of an olefinically unsaturated compound using an organic hydroperoxide as an epoxidizing agent. U.S. Patent No. 3350422 (31 Oct, 1967); Kollar J. Epoxidation process. U.S. Patent No. 3351635 (7 Nov, 1967)

Sheng MN, Zajacek JG. Method of producing epoxides. GB Patent No. 1136923 (18 Dec, 1967)

Clerici MG, Ricci M, Strukul G. Formation of C-O Bonds by Oxidation. Metal-catalysis in Industrial Organic Processes, Ed. G.P. Chiusoli and P.M. Maitlis, RSC Publishing, Cambridge (UK), 2006:23-78. https://doi.org/10.1039/9781847555328-00023

Valente A, Petrovski Z, Branco L, Afonso C, Pillinger M, Lopes A, Romão C, Nunes C, Gonçalves I. Epoxidation of cyclooctene catalyzed by dioxomolybdenum(VI) complexes in ionic liquids. Journal of Molecular Catalysis A: Chemical 2004;218(1):5-11. https://doi.org/10.1016/j.molcata.2004.04.002

Oliveira T, Gomes A, Lopes A, Lourenço J, Almeida Paz F, Pillinger M, Gonçalves I. Dichlorodioxomolybdenum( vi ) complexes bearing oxygen-donor ligands as olefin epoxidation catalysts . Dalton Trans. 2015;44(31):14139-14148. https://doi.org/10.1039/c5dt02165k

Balula S, Bruno S, Gomes A, Valente A, Pillinger M, Gonçalves I, Macquarrie D, Clark J. Epoxidation of olefins using a dichlorodioxomolybdenum(VI)-pyridylimine complex as catalyst. Inorganica Chimica Acta 2012;387:234-239. https://doi.org/10.1016/j.ica.2012.01.029

Günyar A, Betz D, Drees M, Herdtweck E, Kühn F. Highly soluble dichloro, dibromo and dimethyl dioxomolybdenum(VI)-bipyridine complexes as catalysts for the epoxidation of olefins. Journal of Molecular Catalysis A: Chemical 2010;331(1-2):117-124. https://doi.org/10.1016/j.molcata.2010.08.014

Bibal C, Daran J, Deroover S, Poli R. Ionic Schiff base dioxidomolybdenum(VI) complexes as catalysts in ionic liquid media for cyclooctene epoxidation. Polyhedron 2010;29(1):639-647. https://doi.org/10.1016/j.poly.2009.09.001

Abrantes M, Paz F, Valente A, Pereira C, Gago S, Rodrigues A, Klinowski J, Pillinger M, Gonçalves I. Amino acid-functionalized cyclopentadienyl molybdenum tricarbonyl complex and its use in catalytic olefin epoxidation. Journal of Organometallic Chemistry 2009;694(12):1826-1833. https://doi.org/10.1016/j.jorganchem.2009.01.012

Brito J, Ladeira S, Teuma E, Royo B, Gómez M. Dioxomolybdenum(VI) complexes containing chiral oxazolines applied in alkenes epoxidation in ionic liquids: A highly diastereoselective catalyst. Applied Catalysis A: General 2011;398(1-2):88-95. https://doi.org/10.1016/j.apcata.2011.03.024

Neves P, Gago S, Pereira C, Figueiredo S, Lemos A, Lopes A, Gonçalves I, Pillinger M, Silva C, Valente A. Catalytic Epoxidation and Sulfoxidation Activity of a Dioxomolybdenum(VI) Complex Bearing a Chiral Tetradentate Oxazoline Ligand. Catalysis Letters 2009;132(1-2):94-103. https://doi.org/10.1007/s10562-009-0065-1

Brito J, Gómez M, Muller G, Teruel H, Clinet J, Duñach E, Maestro M. Structural Studies of Mono- and Dimetallic Mo VI Complexes − A New Mechanistic Contribution in Catalytic Olefin Epoxidation Provided by Oxazoline Ligands . Eur. J. Inorg. Chem. 2004;2004(21):4278-4285. https://doi.org/10.1002/ejic.200400331

Brito J, Teruel H, Massou S, Gómez M. 95 Mo NMR: a useful tool for structural studies in solution . Magn. Reson. Chem. 2009;47(7):573-577. https://doi.org/10.1002/mrc.2431

Tsuji J, Takahashi H, Morikawa M. Organic syntheses by means of noble metal compounds XVII. Reaction of π-allylpalladium chloride with nucleophiles. Tetrahedron Letters 1965;6(49):4387-4388. https://doi.org/10.1016/s0040-4039(00)71674-1

Trost B, Fullerton T. New synthetic reactions. Allylic alkylation. J. Am. Chem. Soc. 1973;95(1):292-294. https://doi.org/10.1021/ja00782a080

Trost B, Dietsch T. New synthetic reactions. Asymmetric induction in allylic alkylations. J. Am. Chem. Soc. 1973;95(24):8200-8201. https://doi.org/10.1021/ja00805a056

Trost B, Van Vranken D. Asymmetric Transition Metal-Catalyzed Allylic Alkylations. Chemical Reviews 1996;96(1):395-422. https://doi.org/10.1021/cr9409804

Trost B, Crawley M. Asymmetric Transition-Metal-Catalyzed Allylic Alkylations: Applications in Total Synthesis. Chemical Reviews 2003;103(8):2921-2944. https://doi.org/10.1021/cr020027w

Lu Z, Ma S. Metal-Catalyzed Enantioselective Allylation in Asymmetric Synthesis. Angewandte Chemie International Edition 2008;47(2):258-297. https://doi.org/10.1002/anie.200605113

Diéguez M, Pàmies O. Biaryl Phosphites: New Efficient Adaptative Ligands for Pd-Catalyzed Asymmetric Allylic Substitution Reactions. Accounts of Chemical Research 2010;43(2):312-322. https://doi.org/10.1021/ar9002152

Toma S, Gotov B, Kmentová I, Solčániová E. Enantioselective allylic substitution catalyzed by Pd0–ferrocenylphosphine complexes in [bmim][PF6] ionic liquid. Green Chemistry 2000;2(4):149-151. https://doi.org/10.1039/b002124p

Kmentová I, Gotov B, Solcániová E, Toma S. Study of ligand and base effects on enantioselective allylation catalyzed by Pd(0) phosphine complexes in [bmim][PF6] ionic liquid. Green Chemistry 2002;4(2):103-106. https://doi.org/10.1039/b109178f

Chen W, Xu L, Chatterton C, Xiao J. Palladium catalysed allylation reactions in ionic liquids. Chemical Communications 1999;(13):1247-1248. https://doi.org/10.1039/a903323h

Ross J, Xiao J. The Effect of Hydrogen Bonding on Allylic Alkylation and Isomerization Reactions in Ionic Liquids. Chemistry - A European Journal 2003;9(20):4900-4906. https://doi.org/10.1002/chem.200304895

Leclercq L, Suisse I, Nowogrocki G, Agbossou-Niedercorn F. Halide-free highly-pure imidazolium triflate ionic liquids: Preparation and use in palladium-catalysed allylic alkylation. Green Chemistry 2007;9(10):1097. https://doi.org/10.1039/b703096g

Kawatsura M, Nobuto H, Hayashi S, Hirakawa T, Ikeda D, Itoh T. Palladium-catalyzed Regio- and Diastereoselective Allylic Alkylation in Ionic Liquids. Chem. Lett. 2011;40(9):953-955. https://doi.org/10.1246/cl.2011.953

Taddei M, Linciano P, Pizzetti M, Porcheddu A. Use of Primary Amines for the Selective N-Alkylation of Anilines by a Reusable Heterogeneous Catalyst. Synlett 2013;24(17):2249-2254. https://doi.org/10.1055/s-0033-1339667

Escárcega-Bobadilla M, Teuma E, Masdeu-Bultó A, Gómez M. New bicyclic phosphorous ligands: synthesis, structure and catalytic applications in ionic liquids. Tetrahedron 2011;67(2):421-428. https://doi.org/10.1016/j.tet.2010.11.023

Favier I, Castillo A, Godard C, Castillón S, Claver C, Gómez M, Teuma E. Efficient recycling of a chiral palladium catalytic system for asymmetric allylic substitutions in ionic liquid. Chemical Communications 2011;47(27):7869. https://doi.org/10.1039/c1cc12157j

Guerrero-Ríos I, Martin E. Catalyst life in imidazolium-based ionic liquids for palladium-catalysed asymmetric allylic alkylation. Dalton Transactions 2014;43(20):7533. https://doi.org/10.1039/c4dt00169a

Cammarata L, Kazarian S, Salter P, Welton T. Molecular states of water in room temperature ionic liquidsElectronic Supplementary Information available. See http://www.rsc.org/suppdata/cp/b1/b106900d/. Phys. Chem. Chem. Phys. 2001;3(23):5192-5200. https://doi.org/10.1039/b106900d

Bravo M, Favier I, Saffon N, Ceder R, Muller G, Gómez M, Rocamora M. Efficient Palladium Catalysts Containing Original Imidazolium-Tagged Chiral Diamidophosphite Ligands for Asymmetric Allylic Substitutions in Neat Ionic Liquid. Organometallics 2014;33(3):771-779. https://doi.org/10.1021/om4011577

Durand J, Teuma E, Gómez M. An Overview of Palladium Nanocatalysts: Surface and Molecular Reactivity. Eur. J. Inorg. Chem. 2008;2008(23):3577-3586. https://doi.org/10.1002/ejic.200800569

Cassol C, Umpierre A, Machado G, Wolke S, Dupont J. The Role of Pd Nanoparticles in Ionic Liquid in the Heck Reaction. J. Am. Chem. Soc. 2005;127(10):3298-3299. https://doi.org/10.1021/ja0430043

Amiens C, Chaudret B, Ciuculescu-Pradines D, Collière V, Fajerwerg K, Fau P, Kahn M, Maisonnat A, Soulantica K, Philippot K. Organometallic approach for the synthesis of nanostructures. New J. Chem. 2013;37(11):3374. https://doi.org/10.1039/c3nj00650f

Durand J, Teuma E, Malbosc F, Kihn Y, Gómez M. Palladium nanoparticles immobilized in ionic liquid: An outstanding catalyst for the Suzuki C–C coupling. Catalysis Communications 2008;9(2):273-275. https://doi.org/10.1016/j.catcom.2007.06.015

Durand J, Fernández F, Barrière C, Teuma E, Gómez K, González G, Gómez M. DOSY technique applied to palladium nanoparticles in ionic liquids. Magn. Reson. Chem. 2008;46(8):739-743. https://doi.org/10.1002/mrc.2244

Clement N, Cavell K, Jones C, Elsevier C. Oxidative Addition of Imidazolium Salts to Ni0 and Pd0: Synthesis and Structural Characterization of Unusually Stable Metal–Hydride Complexes. Angewandte Chemie International Edition 2004;43:1277. https://doi.org/10.1002/anie.200353409

Jansat S, Durand J, Favier I, Malbosc F, Pradel C, Teuma E, Gómez M. A Single Catalyst for Sequential Reactions: Dual Homogeneous and Heterogeneous Behavior of Palladium Nanoparticles in Solution. ChemCatChem 2009;1(2):244-246. https://doi.org/10.1002/cctc.200900127

Finke RG. Metal Nanoparticles: Synthesis, Characterization, and Applications Edited by Daniel L. Feldheim (North Carolina State University) and Colby A. Foss, Jr. (Georgetown University). Marcel Dekker, Inc.: New York and Basel. 2002. x+ 338 pp. $150.00. ISBN: 0-8247-0604-8, pp 17–54

Jansat S, Gómez M, Philippot K, Muller G, Guiu E, Claver C, Castillón S, Chaudret B. A Case for Enantioselective Allylic Alkylation Catalyzed by Palladium Nanoparticles. J. Am. Chem. Soc. 2004;126(6):1592-1593. https://doi.org/10.1021/ja036132k

Favier I, Gómez M, Muller G, Axet M, Castillón S, Claver C, Jansat S, Chaudret B, Philippot K. Palladium Catalytic Species Containing Chiral Phosphites: Towards a Discrimination between Molecular and Colloidal Catalysts. Advanced Synthesis & Catalysis 2007;349(16):2459-2469. https://doi.org/10.1002/adsc.200700200

Chacón G, Madec D, Gómez M. under submission.

Favier I, Massou S, Teuma E, Philippot K, Chaudret B, Gómez M. A new and specific mode of stabilization of metallic nanoparticles. Chemical Communications 2008;(28):3296. https://doi.org/10.1039/b804402c

Rodríguez-Pérez L, Pradel C, Serp P, Gómez M, Teuma E. Supported Ionic Liquid Phase Containing Palladium Nanoparticles on Functionalized Multiwalled Carbon Nanotubes: Catalytic Materials for Sequential Heck Coupling/Hydrogenation Process. ChemCatChem 2011;3(4):749-754. https://doi.org/10.1002/cctc.201000321

Tiancun X, Lidun A, Weimin Z, Shishan S, Guoxin X. Mechanism of sulfur poisoning on supported noble metal catalyst ? The adsorption and transformation of sulfur on palladium catalysts with different supports. Catalysis Letters 1992;12(1-3):287-296. https://doi.org/10.1007/bf00767211

Widegren J, Finke R. A review of the problem of distinguishing true homogeneous catalysis from soluble or other metal-particle heterogeneous catalysis under reducing conditions. Journal of Molecular Catalysis A: Chemical 2003;198(1-2):317-341. https://doi.org/10.1016/s1381-1169(02)00728-8

Hagen C, Vieille-Petit L, Laurenczy G, Süss-Fink G, Finke R. Supramolecular Triruthenium Cluster-Based Benzene Hydrogenation Catalysis: Fact or Fiction?. Organometallics 2005;24(8):1819-1831. https://doi.org/10.1021/om048976y

Li M, Chen G, Bhuyain S. The induction phenomenon and catalytic deactivation of thiolate-stabilized raspberry-like polymer composites coated with gold nanoparticles. Nanoscale 2015;7(6):2641-2650. https://doi.org/10.1039/c4nr04497e

Qazi A, Sullivan A. Mesoporous silicabis(ethylsulfanyl)propane palladium catalysts for hydrogenation and one-pot two-step Suzuki cross-coupling followed by hydrogenation. Dalton Transactions 2011;40(40):10637. https://doi.org/10.1039/c1dt10589b

López-Vinasco A, Favier I, Pradel C, Huerta L, Guerrero-Ríos I, Teuma E, Gómez M, Martin E. Unexpected bond activations promoted by palladium nanoparticles. Dalton Transactions 2014;43(24):9038. https://doi.org/10.1039/c3dt53649a

Raluy E, Favier I, López-Vinasco A, Pradel C, Martin E, Madec D, Teuma E, Gómez M. A smart palladium catalyst in ionic liquid for tandem processes. Phys. Chem. Chem. Phys. 2011;13(30):13579. https://doi.org/10.1039/c1cp20619b

López-Vinasco A, Guerrero-Ríos I, Favier I, Pradel C, Teuma E, Gómez M, Martin E. Tuning the hydrogen donor/acceptor behavior of ionic liquids in Pd-catalyzed multi-step reactions. Catalysis Communications 2015;63:56-61. https://doi.org/10.1016/j.catcom.2014.10.011

Wang L, He W, Yu Z. Transition-metal mediated carbon–sulfur bond activation and transformations. Chem. Soc. Rev. 2013;42(2):599-621. https://doi.org/10.1039/c2cs35323g

Pavia C, Ballerini E, Bivona L, Giacalone F, Aprile C, Vaccaro L, Gruttadauria M. Palladium Supported on Cross-Linked Imidazolium Network on Silica as Highly Sustainable Catalysts for the Suzuki Reaction under Flow Conditions. Advanced Synthesis & Catalysis 2013;355(10):2007-2018. https://doi.org/10.1002/adsc.201300215

Neouze M. About the interactions between nanoparticles and imidazolium moieties: emergence of original hybrid materials. Journal of Materials Chemistry 2010;20(43):9593. https://doi.org/10.1039/c0jm00616e

Ribeiro P, Matsubara E, Rosolen J, Donate P, Gunnella R. Palladium decoration of hybrid carbon nanotubes/charcoal composite and its catalytic behavior in the hydrogenation of trans-cinnamaldehyde. Journal of Molecular Catalysis A: Chemical 2015;410:34-40. https://doi.org/10.1016/j.molcata.2015.08.027

Corrias M, Caussat B, Ayral A, Durand J, Kihn Y, Kalck P, Serp P. Carbon nanotubes produced by fluidized bed catalytic CVD: first approach of the process. Chemical Engineering Science 2003;58(19):4475-4482. https://doi.org/10.1016/s0009-2509(03)00265-3

Gu Y, Favier I, Pradel C, Gin D, Lahitte J, Noble R, Gómez M, Remigy J. High catalytic efficiency of palladium nanoparticles immobilized in a polymer membrane containing poly(ionic liquid) in Suzuki–Miyaura cross-coupling reaction. Journal of Membrane Science 2015;492:331-339. https://doi.org/10.1016/j.memsci.2015.05.051