Ionic liquids in catalysis: molecular and nanometric metal systems


  • Gustavo Chacón Laboratoire Hétérochimie Fondamentale et Appliquée, UMR CNRS 5069, Université de Toulouse 3 – Paul Sabatier, 118 route de Narbonne, 31062 Toulouse cedex 9, France Current address: Institute of Chemistry, Laboratory of Molecular Catalysis UFRGS, Av. Bento Gonçalves, 9500, 91501-970 P.O. Box 15003, Porto Alegre, RS, Brazil
  • Jérôme Durand Laboratoire de Chimie de Coordination, UPR CNRS 8241 composante ENSIACET, Université de Toulouse, 4 allée Emile Monso-CS 44362, 31030 Toulouse cedex 4, France
  • Isabelle Favier Laboratoire Hétérochimie Fondamentale et Appliquée, UMR CNRS 5069, Université de Toulouse 3 – Paul Sabatier, 118 route de Narbonne, 31062 Toulouse cedex 9, France
  • Emmanuelle Teuma Laboratoire Hétérochimie Fondamentale et Appliquée, UMR CNRS 5069, Université de Toulouse 3 – Paul Sabatier, 118 route de Narbonne, 31062 Toulouse cedex 9, France
  • Montserrat Gomez Laboratoire Hétérochimie Fondamentale et Appliquée, UMR CNRS 5069 Université de Toulouse 3 - Paul Sabatier



ionic liquids, catalysis, organometallic complexes, metallic nanoparticles, supported ionic liquid phase


The catalyst immobilization in a liquid phase represents an attractive means to preserve high activities and selectivities, also permitting an easy recycling. To attain this goal, organic products should be extracted in a simple way from the catalytic phase leading to metal-free target compounds; for this reason, ionic liquids exhibiting high affinity for metallic species and low affinity for low polar compounds, turn into a promising medium, in particular for the synthesis of fine chemicals. In the present Accounts, we illustrate this approach through our research involving both molecular organometallic compounds and metallic nanoparticles dispersed in an ionic liquid phase.


Favier I, Madec D, Gómez M. Metallic Nanoparticles in Ionic Liquids - Applications in Catalysis. Nanomaterials in Catalysis 2012:203-249.

Zhang Q, Zhang S, Deng Y. Recent advances in ionic liquid catalysis. Green Chemistry 2011;13(10):2619.

Dupont J, Scholten J. On the structural and surface properties of transition-metal nanoparticles in ionic liquids. Chemical Society Reviews 2010;39(5):1780.

Olivier-Bourbigou H, Magna L, Morvan D. Ionic liquids and catalysis: Recent progress from knowledge to applications. Applied Catalysis A: General 2010;373(1-2):1-56.

Antonietti M, Kuang D, Smarsly B, Zhou Y. Ionic Liquids for the Convenient Synthesis of Functional Nanoparticles and Other Inorganic Nanostructures. Angewandte Chemie International Edition 2004;43(38):4988-4992.

Dupont J. On the solid, liquid and solution structural organization of imidazolium ionic liquids. J. Braz. Chem. Soc. 2004;15(3):341-350.

Ríos A, Hernández-Fernández F, Tomás-Alonso F, Palacios J, Gómez D, Rubio M, Víllora G. A SEM–EDX study of highly stable supported liquid membranes based on ionic liquids. Journal of Membrane Science 2007;300(1-2):88-94.

Mehnert C. Supported Ionic Liquid Catalysis. Chemistry - A European Journal 2005;11(1):50-56.

Rodríguez-Pérez L, Teuma E, Falqui A, Gómez M, Serp P. Supported ionic liquid phase catalysis on functionalized carbon nanotubes. Chemical Communications 2008;(35):4201.

Rodríguez-Pérez L, Coppel Y, Favier I, Teuma E, Serp P, Gómez M. Imidazolium-based ionic liquids immobilized on solid supports: effect on the structure and thermostability. Dalton Transactions 2010;39(32):7565.

Jiang F, Li C, Fu H, Wang C, Guo X, Jiang Z, Wu G, Chen S. Temperature-Induced Molecular Rearrangement of an Ionic Liquid Confined in Nanospaces: An in Situ X-ray Absorption Fine Structure Study . J. Phys. Chem. C 2015;119(39):22724-22731.

Durand J, Teuma E, Gómez M. Ionic liquids as a medium for enantioselective catalysis. Comptes Rendus Chimie 2007;10(3):152-177.

Prechtl M, Scholten J, Neto B, Dupont J. Application of Chiral Ionic Liquids for Asymmetric Induction in Catalysis. Current Organic Chemistry 2009;13(13):1259-1277.

Van Doorslaer C, Wahlen J, Mertens P, Binnemans K, De Vos D. Immobilization of molecular catalysts in supported ionic liquid phases. Dalton Transactions 2010;39(36):8377.

Qiao Y, Headley A. Ionic Liquid Immobilized Organocatalysts for Asymmetric Reactions in Aqueous Media. Catalysts 2013;3(3):709-725.

Mendel R, Bittner F. Cell biology of molybdenum. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 2006;1763(7):621-635.

Brito J, Royo B, Gómez M. An overview of chiral molybdenum complexes applied in enantioselective catalysis. Catal. Sci. Technol. 2011;1(7):1109.

Kollar J. Catalytic epoxidation of an olefinically unsaturated compound using an organic hydroperoxide as an epoxidizing agent. U.S. Patent No. 3350422 (31 Oct, 1967); Kollar J. Epoxidation process. U.S. Patent No. 3351635 (7 Nov, 1967)

Sheng MN, Zajacek JG. Method of producing epoxides. GB Patent No. 1136923 (18 Dec, 1967)

Clerici MG, Ricci M, Strukul G. Formation of C-O Bonds by Oxidation. Metal-catalysis in Industrial Organic Processes, Ed. G.P. Chiusoli and P.M. Maitlis, RSC Publishing, Cambridge (UK), 2006:23-78.

Valente A, Petrovski Z, Branco L, Afonso C, Pillinger M, Lopes A, Romão C, Nunes C, Gonçalves I. Epoxidation of cyclooctene catalyzed by dioxomolybdenum(VI) complexes in ionic liquids. Journal of Molecular Catalysis A: Chemical 2004;218(1):5-11.

Oliveira T, Gomes A, Lopes A, Lourenço J, Almeida Paz F, Pillinger M, Gonçalves I. Dichlorodioxomolybdenum( vi ) complexes bearing oxygen-donor ligands as olefin epoxidation catalysts . Dalton Trans. 2015;44(31):14139-14148.

Balula S, Bruno S, Gomes A, Valente A, Pillinger M, Gonçalves I, Macquarrie D, Clark J. Epoxidation of olefins using a dichlorodioxomolybdenum(VI)-pyridylimine complex as catalyst. Inorganica Chimica Acta 2012;387:234-239.

Günyar A, Betz D, Drees M, Herdtweck E, Kühn F. Highly soluble dichloro, dibromo and dimethyl dioxomolybdenum(VI)-bipyridine complexes as catalysts for the epoxidation of olefins. Journal of Molecular Catalysis A: Chemical 2010;331(1-2):117-124.

Bibal C, Daran J, Deroover S, Poli R. Ionic Schiff base dioxidomolybdenum(VI) complexes as catalysts in ionic liquid media for cyclooctene epoxidation. Polyhedron 2010;29(1):639-647.

Abrantes M, Paz F, Valente A, Pereira C, Gago S, Rodrigues A, Klinowski J, Pillinger M, Gonçalves I. Amino acid-functionalized cyclopentadienyl molybdenum tricarbonyl complex and its use in catalytic olefin epoxidation. Journal of Organometallic Chemistry 2009;694(12):1826-1833.

Brito J, Ladeira S, Teuma E, Royo B, Gómez M. Dioxomolybdenum(VI) complexes containing chiral oxazolines applied in alkenes epoxidation in ionic liquids: A highly diastereoselective catalyst. Applied Catalysis A: General 2011;398(1-2):88-95.

Neves P, Gago S, Pereira C, Figueiredo S, Lemos A, Lopes A, Gonçalves I, Pillinger M, Silva C, Valente A. Catalytic Epoxidation and Sulfoxidation Activity of a Dioxomolybdenum(VI) Complex Bearing a Chiral Tetradentate Oxazoline Ligand. Catalysis Letters 2009;132(1-2):94-103.

Brito J, Gómez M, Muller G, Teruel H, Clinet J, Duñach E, Maestro M. Structural Studies of Mono- and Dimetallic Mo VI Complexes − A New Mechanistic Contribution in Catalytic Olefin Epoxidation Provided by Oxazoline Ligands . Eur. J. Inorg. Chem. 2004;2004(21):4278-4285.

Brito J, Teruel H, Massou S, Gómez M. 95 Mo NMR: a useful tool for structural studies in solution . Magn. Reson. Chem. 2009;47(7):573-577.

Tsuji J, Takahashi H, Morikawa M. Organic syntheses by means of noble metal compounds XVII. Reaction of π-allylpalladium chloride with nucleophiles. Tetrahedron Letters 1965;6(49):4387-4388.

Trost B, Fullerton T. New synthetic reactions. Allylic alkylation. J. Am. Chem. Soc. 1973;95(1):292-294.

Trost B, Dietsch T. New synthetic reactions. Asymmetric induction in allylic alkylations. J. Am. Chem. Soc. 1973;95(24):8200-8201.

Trost B, Van Vranken D. Asymmetric Transition Metal-Catalyzed Allylic Alkylations. Chemical Reviews 1996;96(1):395-422.

Trost B, Crawley M. Asymmetric Transition-Metal-Catalyzed Allylic Alkylations: Applications in Total Synthesis. Chemical Reviews 2003;103(8):2921-2944.

Lu Z, Ma S. Metal-Catalyzed Enantioselective Allylation in Asymmetric Synthesis. Angewandte Chemie International Edition 2008;47(2):258-297.

Diéguez M, Pàmies O. Biaryl Phosphites: New Efficient Adaptative Ligands for Pd-Catalyzed Asymmetric Allylic Substitution Reactions. Accounts of Chemical Research 2010;43(2):312-322.

Toma S, Gotov B, Kmentová I, Solčániová E. Enantioselective allylic substitution catalyzed by Pd0–ferrocenylphosphine complexes in [bmim][PF6] ionic liquid. Green Chemistry 2000;2(4):149-151.

Kmentová I, Gotov B, Solcániová E, Toma S. Study of ligand and base effects on enantioselective allylation catalyzed by Pd(0) phosphine complexes in [bmim][PF6] ionic liquid. Green Chemistry 2002;4(2):103-106.

Chen W, Xu L, Chatterton C, Xiao J. Palladium catalysed allylation reactions in ionic liquids. Chemical Communications 1999;(13):1247-1248.

Ross J, Xiao J. The Effect of Hydrogen Bonding on Allylic Alkylation and Isomerization Reactions in Ionic Liquids. Chemistry - A European Journal 2003;9(20):4900-4906.

Leclercq L, Suisse I, Nowogrocki G, Agbossou-Niedercorn F. Halide-free highly-pure imidazolium triflate ionic liquids: Preparation and use in palladium-catalysed allylic alkylation. Green Chemistry 2007;9(10):1097.

Kawatsura M, Nobuto H, Hayashi S, Hirakawa T, Ikeda D, Itoh T. Palladium-catalyzed Regio- and Diastereoselective Allylic Alkylation in Ionic Liquids. Chem. Lett. 2011;40(9):953-955.

Taddei M, Linciano P, Pizzetti M, Porcheddu A. Use of Primary Amines for the Selective N-Alkylation of Anilines by a Reusable Heterogeneous Catalyst. Synlett 2013;24(17):2249-2254.

Escárcega-Bobadilla M, Teuma E, Masdeu-Bultó A, Gómez M. New bicyclic phosphorous ligands: synthesis, structure and catalytic applications in ionic liquids. Tetrahedron 2011;67(2):421-428.

Favier I, Castillo A, Godard C, Castillón S, Claver C, Gómez M, Teuma E. Efficient recycling of a chiral palladium catalytic system for asymmetric allylic substitutions in ionic liquid. Chemical Communications 2011;47(27):7869.

Guerrero-Ríos I, Martin E. Catalyst life in imidazolium-based ionic liquids for palladium-catalysed asymmetric allylic alkylation. Dalton Transactions 2014;43(20):7533.

Cammarata L, Kazarian S, Salter P, Welton T. Molecular states of water in room temperature ionic liquidsElectronic Supplementary Information available. See Phys. Chem. Chem. Phys. 2001;3(23):5192-5200.

Bravo M, Favier I, Saffon N, Ceder R, Muller G, Gómez M, Rocamora M. Efficient Palladium Catalysts Containing Original Imidazolium-Tagged Chiral Diamidophosphite Ligands for Asymmetric Allylic Substitutions in Neat Ionic Liquid. Organometallics 2014;33(3):771-779.

Durand J, Teuma E, Gómez M. An Overview of Palladium Nanocatalysts: Surface and Molecular Reactivity. Eur. J. Inorg. Chem. 2008;2008(23):3577-3586.

Cassol C, Umpierre A, Machado G, Wolke S, Dupont J. The Role of Pd Nanoparticles in Ionic Liquid in the Heck Reaction. J. Am. Chem. Soc. 2005;127(10):3298-3299.

Amiens C, Chaudret B, Ciuculescu-Pradines D, Collière V, Fajerwerg K, Fau P, Kahn M, Maisonnat A, Soulantica K, Philippot K. Organometallic approach for the synthesis of nanostructures. New J. Chem. 2013;37(11):3374.

Durand J, Teuma E, Malbosc F, Kihn Y, Gómez M. Palladium nanoparticles immobilized in ionic liquid: An outstanding catalyst for the Suzuki C–C coupling. Catalysis Communications 2008;9(2):273-275.

Durand J, Fernández F, Barrière C, Teuma E, Gómez K, González G, Gómez M. DOSY technique applied to palladium nanoparticles in ionic liquids. Magn. Reson. Chem. 2008;46(8):739-743.

Clement N, Cavell K, Jones C, Elsevier C. Oxidative Addition of Imidazolium Salts to Ni0 and Pd0: Synthesis and Structural Characterization of Unusually Stable Metal–Hydride Complexes. Angewandte Chemie International Edition 2004;43:1277.

Jansat S, Durand J, Favier I, Malbosc F, Pradel C, Teuma E, Gómez M. A Single Catalyst for Sequential Reactions: Dual Homogeneous and Heterogeneous Behavior of Palladium Nanoparticles in Solution. ChemCatChem 2009;1(2):244-246.

Finke RG. Metal Nanoparticles: Synthesis, Characterization, and Applications Edited by Daniel L. Feldheim (North Carolina State University) and Colby A. Foss, Jr. (Georgetown University). Marcel Dekker, Inc.: New York and Basel. 2002. x+ 338 pp. $150.00. ISBN: 0-8247-0604-8, pp 17–54

Jansat S, Gómez M, Philippot K, Muller G, Guiu E, Claver C, Castillón S, Chaudret B. A Case for Enantioselective Allylic Alkylation Catalyzed by Palladium Nanoparticles. J. Am. Chem. Soc. 2004;126(6):1592-1593.

Favier I, Gómez M, Muller G, Axet M, Castillón S, Claver C, Jansat S, Chaudret B, Philippot K. Palladium Catalytic Species Containing Chiral Phosphites: Towards a Discrimination between Molecular and Colloidal Catalysts. Advanced Synthesis & Catalysis 2007;349(16):2459-2469.

Chacón G, Madec D, Gómez M. under submission.

Favier I, Massou S, Teuma E, Philippot K, Chaudret B, Gómez M. A new and specific mode of stabilization of metallic nanoparticles. Chemical Communications 2008;(28):3296.

Rodríguez-Pérez L, Pradel C, Serp P, Gómez M, Teuma E. Supported Ionic Liquid Phase Containing Palladium Nanoparticles on Functionalized Multiwalled Carbon Nanotubes: Catalytic Materials for Sequential Heck Coupling/Hydrogenation Process. ChemCatChem 2011;3(4):749-754.

Tiancun X, Lidun A, Weimin Z, Shishan S, Guoxin X. Mechanism of sulfur poisoning on supported noble metal catalyst ? The adsorption and transformation of sulfur on palladium catalysts with different supports. Catalysis Letters 1992;12(1-3):287-296.

Widegren J, Finke R. A review of the problem of distinguishing true homogeneous catalysis from soluble or other metal-particle heterogeneous catalysis under reducing conditions. Journal of Molecular Catalysis A: Chemical 2003;198(1-2):317-341.

Hagen C, Vieille-Petit L, Laurenczy G, Süss-Fink G, Finke R. Supramolecular Triruthenium Cluster-Based Benzene Hydrogenation Catalysis: Fact or Fiction?. Organometallics 2005;24(8):1819-1831.

Li M, Chen G, Bhuyain S. The induction phenomenon and catalytic deactivation of thiolate-stabilized raspberry-like polymer composites coated with gold nanoparticles. Nanoscale 2015;7(6):2641-2650.

Qazi A, Sullivan A. Mesoporous silicabis(ethylsulfanyl)propane palladium catalysts for hydrogenation and one-pot two-step Suzuki cross-coupling followed by hydrogenation. Dalton Transactions 2011;40(40):10637.

López-Vinasco A, Favier I, Pradel C, Huerta L, Guerrero-Ríos I, Teuma E, Gómez M, Martin E. Unexpected bond activations promoted by palladium nanoparticles. Dalton Transactions 2014;43(24):9038.

Raluy E, Favier I, López-Vinasco A, Pradel C, Martin E, Madec D, Teuma E, Gómez M. A smart palladium catalyst in ionic liquid for tandem processes. Phys. Chem. Chem. Phys. 2011;13(30):13579.

López-Vinasco A, Guerrero-Ríos I, Favier I, Pradel C, Teuma E, Gómez M, Martin E. Tuning the hydrogen donor/acceptor behavior of ionic liquids in Pd-catalyzed multi-step reactions. Catalysis Communications 2015;63:56-61.

Wang L, He W, Yu Z. Transition-metal mediated carbon–sulfur bond activation and transformations. Chem. Soc. Rev. 2013;42(2):599-621.

Pavia C, Ballerini E, Bivona L, Giacalone F, Aprile C, Vaccaro L, Gruttadauria M. Palladium Supported on Cross-Linked Imidazolium Network on Silica as Highly Sustainable Catalysts for the Suzuki Reaction under Flow Conditions. Advanced Synthesis & Catalysis 2013;355(10):2007-2018.

Neouze M. About the interactions between nanoparticles and imidazolium moieties: emergence of original hybrid materials. Journal of Materials Chemistry 2010;20(43):9593.

Ribeiro P, Matsubara E, Rosolen J, Donate P, Gunnella R. Palladium decoration of hybrid carbon nanotubes/charcoal composite and its catalytic behavior in the hydrogenation of trans-cinnamaldehyde. Journal of Molecular Catalysis A: Chemical 2015;410:34-40.

Corrias M, Caussat B, Ayral A, Durand J, Kihn Y, Kalck P, Serp P. Carbon nanotubes produced by fluidized bed catalytic CVD: first approach of the process. Chemical Engineering Science 2003;58(19):4475-4482.

Gu Y, Favier I, Pradel C, Gin D, Lahitte J, Noble R, Gómez M, Remigy J. High catalytic efficiency of palladium nanoparticles immobilized in a polymer membrane containing poly(ionic liquid) in Suzuki–Miyaura cross-coupling reaction. Journal of Membrane Science 2015;492:331-339.