Sustainable Chemistry: Reversible reaction of CO2 with amines

Pamela Pollet, Charles L. Liotta

Abstract

The reaction of primary and secondary amines with CO2 has been successfully leveraged to develop sustainable processes. In this article, we review specific examples that use the reversible reaction of CO2 with amines to synergistically enhance reaction and recovery of the products.  The three cases of interest highlighted herein are:  (i) reversible protection of amines, (ii) reversible ionic liquids for CO2 capture and chemical transformations, and (iii) reversible gels of ethylene diamine. These examples demonstrate that the reversible reaction of amines with CO2 is one of the tools in the sustainable technology’s toolbox.  

Keywords

reversible materials; CO2; amines; smart processes; sustainability

Full Text:

PDF

References

Eckert C, Knutson B, Debenedetti P. Supercritical fluids as solvents for chemical and materials processing. Nature 1996;383(6598):313-318. https://doi.org/10.1038/383313a0

Savage P. Organic Chemical Reactions in Supercritical Water. Chemical Reviews 1999;99(2):603-622. https://doi.org/10.1021/cr9700989

Jessop P, Ikariya T, Noyori R. Homogeneous Catalysis in Supercritical Fluids. Chemical Reviews 1999;99(2):475-494. https://doi.org/10.1021/cr970037a

Supercritical fluids in green chemistry. Green Chemistry 2008;10(7):730. https://doi.org/10.1039/b809498p

Liotta C, Hallett J, Pollet P, Eckert C. (2007) Reactions in Nearcritical Water, in Organic Reactions in Water: Principles, Strategies and Applications (ed U. M. Lindström), Blackwell Publishing Ltd, Oxford, UK. https://doi.org/10.1002/9780470988817.ch9

Jessop P, Subramaniam B. Gas-Expanded Liquids. Chemical Reviews 2007;107(6):2666-2694. https://doi.org/10.1021/cr040199o

Hallett J, Pollet P, Liotta C, Eckert C. Reversible in Situ Catalyst Formation . Accounts of Chemical Research 2008;41(3):458-467. https://doi.org/10.1021/ar700106a

Jessop P, Heldebrant D, Li X, Eckert C, Liotta C. Green chemistry: Reversible nonpolar-to-polar solvent. Nature 2005;436(7054):1102-1102. https://doi.org/10.1038/4361102a

Pollet P, Eckert C, Liotta C. Switchable solvents. Chemical Science 2011;2(4):609. https://doi.org/10.1039/c0sc00568a

Vinci D, Donaldson M, Hallett J, John E, Pollet P, Thomas C, Grilly J, Jessop P, Liotta C, Eckert C. Piperylene sulfone: a labile and recyclable DMSO substitute. Chemical Communications 2007;(14):1427. https://doi.org/10.1039/b616806j

Dibenedetto A, Aresta M, Fragale C, Narracci M. Reaction of silylalkylmono- and silylalkyldi-amines with carbon dioxide: evidence of formation of inter- and intra-molecular ammonium carbamates and their conversion into organic carbamates of industrial interest under carbon dioxide catalysis. Green Chemistry 2002;4(5):439-443. https://doi.org/10.1039/b205319p

Aresta M, Ballivet-Tkatchenko D, Dell’Amico D, Boschi D, Calderazzo F, Labella L, Bonnet M, Faure R, Marchetti F. Isolation and structural determination of two derivatives of the elusive carbamic acid. Chemical Communications 2000;(13):1099-1100. https://doi.org/10.1039/b002479l

Switzer J, Ethier A, Flack K, Biddinger E, Gelbaum L, Pollet P, Eckert C, Liotta C. Reversible Ionic Liquid Stabilized Carbamic Acids: A Pathway Toward Enhanced CO 2 Capture . Industrial & Engineering Chemistry Research 2013;52(36):13159-13163. https://doi.org/10.1021/ie4018836

Hirst L, Pinkel I. Absorption of Carbon Dioxide by Amines Di- and Triethanolamine and Tetramine. Ind. Eng. Chem. 1936;28(11):1313-1315. https://doi.org/10.1021/ie50323a018

Boot-Handford M, Abanades J, Anthony E, Blunt M, Brandani S, Mac Dowell N, Fernández J, Ferrari M, Gross R, Hallett J, Haszeldine R, Heptonstall P, Lyngfelt A, Makuch Z, Mangano E, Porter R, Pourkashanian M, Rochelle G, Shah N, Yao J, Fennell P. Carbon capture and storage update. Energy Environ. Sci. 2014;7(1):130-189. https://doi.org/10.1039/c3ee42350f

Zhou S, Chen X, Nguyen T, Voice A, Rochelle G. Aqueous Ethylenediamine for CO2 Capture. ChemSusChem 2010;3(8):913-918. https://doi.org/10.1002/cssc.200900293

Rochelle G. Amine Scrubbing for CO2 Capture. Science 2009;325(5948):1652-1654. https://doi.org/10.1126/science.1176731

Ethier A, Switzer J, Rumple A, Medina-Ramos W, Li Z, Fisk J, Holden B, Gelbaum L, Pollet P, Eckert C, Liotta C. The Effects of Solvent and Added Bases on the Protection of Benzylamines with Carbon Dioxide. Processes 2015;3(3):497-513. https://doi.org/10.3390/pr3030497

Peeters A, Ameloot R, De Vos D. Carbon dioxide as a reversible amine-protecting agent in selective Michael additions and acylations. Green Chemistry 2013;15(6):1550. https://doi.org/10.1039/c3gc40568k

Kainz S, Brinkmann A, Leitner W, Pfaltz A. Iridium-Catalyzed Enantioselective Hydrogenation of Imines in Supercritical Carbon Dioxide. J. Am. Chem. Soc. 1999;121(27):6421-6429. https://doi.org/10.1021/ja984309i

Xie X, Liotta C, Eckert C. CO 2 -Protected Amine Formation from Nitrile and Imine Hydrogenation in Gas-Expanded Liquids . Industrial & Engineering Chemistry Research 2004;43(24):7907-7911. https://doi.org/10.1021/ie0498201

Wang H, Zhao C, Bhatt A, MacFarlane D, Lu J, Bond A. Electrochemical Study of Dialcarb “Distillable” Room-Temperature Ionic Liquids. ChemPhysChem 2009;10(2):455-461. https://doi.org/10.1002/cphc.200800574

Bhatt A, Bond A. Electrodeposition of silver from the ‘distillable’ ionic liquid, DIMCARB in the absence and presence of chemically induced nanoparticle formation. Journal of Electroanalytical Chemistry 2008;619-620:1-10. https://doi.org/10.1016/j.jelechem.2008.02.029

Rosamilia A, Strauss C, Scott J. Distillable ionic liquids for a new multicomponent reaction. Pure and Applied Chemistry 2007;79(11):1869-1877. https://doi.org/10.1351/pac200779111869

Kreher U, Rosamilia A, Raston C, Scott J, Strauss C. Direct Preparation of Monoarylidene Derivatives of Aldehydes and Enolizable Ketones with DIMCARB. Org. Lett. 2003;5(17):3107-3110. https://doi.org/10.1021/ol0351145

Kreher U, Rosamilia A, Raston C, Scott J, Strauss C. Self-associated, “Distillable” Ionic Media. Molecules 2004;9(6):387-393. https://doi.org/10.3390/90600387

Bhatt A, Bond A, MacFarlane D, Zhang J, Scott J, Strauss C, Iotov P, Kalcheva S. A critical assessment of electrochemistry in a distillable room temperature ionic liquid, DIMCARB. Green Chem. 2006;8(2):161-171. https://doi.org/10.1039/b512263e

Rohan A, Switzer J, Flack K, Hart R, Sivaswamy S, Biddinger E, Talreja M, Verma M, Faltermeier S, Nielsen P, Pollet P, Schuette G, Eckert C, Liotta C. The Synthesis and the Chemical and Physical Properties of Non-Aqueous Silylamine Solvents for Carbon Dioxide Capture. ChemSusChem 2012;5(11):2181-2187. https://doi.org/10.1002/cssc.201200393

Gonzalez-Miquel M, Talreja M, Ethier A, Flack K, Switzer J, Biddinger E, Pollet P, Palomar J, Rodriguez F, Eckert C, Liotta C. COSMO-RS Studies: Structure–Property Relationships for CO 2 Capture by Reversible Ionic Liquids . Industrial & Engineering Chemistry Research 2012;51(49):16066-16073. https://doi.org/10.1021/ie302449c

Jessop P, Heldebrant D, Li X, Eckert C, Liotta C. Green chemistry: Reversible nonpolar-to-polar solvent. Nature 2005;436(7054):1102-1102. https://doi.org/10.1038/4361102a

Phan L, Chiu D, Heldebrant D, Huttenhower H, John E, Li X, Pollet P, Wang R, Eckert C, Liotta C, Jessop P. Switchable Solvents Consisting of Amidine/Alcohol or Guanidine/Alcohol Mixtures. Industrial & Engineering Chemistry Research 2008;47(3):539-545. https://doi.org/10.1021/ie070552r

Blasucci V, Dilek C, Huttenhower H, John E, Llopis-Mestre V, Pollet P, Eckert C, Liotta C. One-component, switchable ionic liquids derived from siloxylated amines. Chem. Commun. 2009;(1):116-118. https://doi.org/10.1039/b816267k

Blasucci V, Hart R, Pollet P, Liotta C, Eckert C. Reversible ionic liquids designed for facile separations. Fluid Phase Equilibria 2010;294(1-2):1-6. https://doi.org/10.1016/j.fluid.2010.04.005

Blasucci V, Hart R, Mestre V, Hahne D, Burlager M, Huttenhower H, Thio B, Pollet P, Liotta C, Eckert C. Single component, reversible ionic liquids for energy applications. Fuel 2010;89(6):1315-1319. https://doi.org/10.1016/j.fuel.2009.11.015

Hart R, Pollet P, Hahne D, John E, Llopis-Mestre V, Blasucci V, Huttenhower H, Leitner W, Eckert C, Liotta C. Benign coupling of reactions and separations with reversible ionic liquids. Tetrahedron 2010;66(5):1082-1090. https://doi.org/10.1016/j.tet.2009.11.014

Phan L, Chiu D, Heldebrant D, Huttenhower H, John E, Li X, Pollet P, Wang R, Eckert C, Liotta C, Jessop P. Switchable Solvents Consisting of Amidine/Alcohol or Guanidine/Alcohol Mixtures. Industrial & Engineering Chemistry Research 2008;47(3):539-545. https://doi.org/10.1021/ie070552r

Rohan A, Switzer J, Flack K, Hart R, Sivaswamy S, Biddinger E, Talreja M, Verma M, Faltermeier S, Nielsen P, Pollet P, Schuette G, Eckert C, Liotta C. The Synthesis and the Chemical and Physical Properties of Non-Aqueous Silylamine Solvents for Carbon Dioxide Capture. ChemSusChem 2012;5(11):2181-2187. https://doi.org/10.1002/cssc.201200393

Gonzalez-Miquel M, Talreja M, Ethier A, Flack K, Switzer J, Biddinger E, Pollet P, Palomar J, Rodriguez F, Eckert C, Liotta C. COSMO-RS Studies: Structure–Property Relationships for CO 2 Capture by Reversible Ionic Liquids . Industrial & Engineering Chemistry Research 2012;51(49):16066-16073. https://doi.org/10.1021/ie302449c

Mejía I, Stanley K, Canales R, Brennecke J. On the High-Pressure Solubilities of Carbon Dioxide in Several Ionic Liquids. Journal of Chemical & Engineering Data 2013;58(9):2642-2653. https://doi.org/10.1021/je400542b

Goodrich B, de la Fuente J, Gurkan B, Lopez Z, Price E, Huang Y, Brennecke J. Effect of Water and Temperature on Absorption of CO 2 by Amine-Functionalized Anion-Tethered Ionic Liquids . The Journal of Physical Chemistry B 2011;115(29):9140-9150. https://doi.org/10.1021/jp2015534

Goodrich B, de la Fuente J, Gurkan B, Zadigian D, Price E, Huang Y, Brennecke J. Experimental Measurements of Amine-Functionalized Anion-Tethered Ionic Liquids with Carbon Dioxide. Industrial & Engineering Chemistry Research 2011;50(1):111-118. https://doi.org/10.1021/ie101688a

Seo S, Chung C, Quiroz-Guzman M, Goodrich BF, Verploegh R, Brennecke JF, Abstr Pap Am Chem S 2012:243.

Ajayaghosh A, George S. First Phenylenevinylene Based Organogels: Self-Assembled Nanostructures via Cooperative Hydrogen Bonding and π-Stacking. J. Am. Chem. Soc. 2001;123(21):5148-5149. https://doi.org/10.1021/ja005933+

Terech P, Weiss R. Low Molecular Mass Gelators of Organic Liquids and the Properties of Their Gels. Chemical Reviews 1997;97(8):3133-3160. https://doi.org/10.1021/cr9700282

Sureshan K, Yamaguchi K, Sei Y, Watanabe Y. Probing Gelation at the Molecular Level: Head-to-Tail Hydrogen-Bonded Self-Assembly of an Inositol-Based Organogelator. European Journal of Organic Chemistry 2004;2004(22):4703-4709. https://doi.org/10.1002/ejoc.200400368

Schmidt R, Schmutz M, Michel M, Decher G, Mésini P. Organogelation Properties of a Series of Oligoamides. Langmuir 2002;18(15):5668-5672. https://doi.org/10.1021/la011549u

Abdallah D, Weiss R. Organogels and Low Molecular Mass Organic Gelators. Adv. Mater. 2000;12(17):1237-1247. https://doi.org/10.1002/1521-4095(200009)12:17<1237::aid-adma1237>3.0.co;2-b

Carretti E, Dei L, Macherelli A, Weiss R. Rheoreversible Polymeric Organogels: The Art of Science for Art Conservation. Langmuir 2004;20(20):8414-8418. https://doi.org/10.1021/la0495175

Carretti E, Dei L, Weiss R. Soft matter and art conservation. Rheoreversible gels and beyond. Soft Matter 2005;1(1):17. https://doi.org/10.1039/b501033k

Yu T, Cristiano R, Weiss R. From simple, neutral triatomic molecules to complex chemistry. Chemical Society Reviews 2010;39(5):1435. https://doi.org/10.1039/b821320h