Functionalized Derivatives of 2-azaspiro[3.3]heptane-1-carboxylic Acid and 7-oxa-2-azaspiro[3.5]nonane-1-carboxylic Acid for Drug Design

Authors

  • Alexander Kirichok Department of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska Street, 64/13, Kyiv 01601, Ukraine
  • Tatyana Yegorova http://orcid.org/0000-0002-1110-9023

DOI:

https://doi.org/10.17721/fujcV11I2P31-38

Keywords:

piperidine, azetidine, bioisoster, pipecolic acid, drug design

Abstract

2-azaspiro[3.3]heptane-1-carboxylic acid and 7-oxa-2-azaspiro[3.5]nonane-1-carboxylic acid, which had been reported as bioisoster of well-known pipecolic acid, were subjected to chemical transformations, resulting in a number of functionalized derivatives. The obtained molecules contained diversified functional groups, allowing their incorporation in bioactive compounds in versatile modes. Described synthetic approaches afforded multigram-scaled synthesis of the desired compounds with good yields, thus being applicable in drug design

References

Lovering F, Bikker J, Humblet C. Escape from Flatland: Increasing Saturation as an Approach to Improving Clinical Success. Journal of Medicinal Chemistry 2009;52(21):6752-6756. https://doi.org/10.1021/jm901241e

Mykhailiuk P. Saturated bioisosteres of benzene: where to go next? Organic & Biomolecular Chemistry 2019;17(11):2839-2849. https://doi.org/10.1039/c8ob02812e

Locke G, Bernhard S, Senge M. Nonconjugated Hydrocarbons as Rigid‐Linear Motifs: Isosteres for Material Sciences and Bioorganic and Medicinal Chemistry. Chemistry – A European Journal 2019;25(18):4590-4647. https://doi.org/10.1002/chem.201804225

Frank N, Nugent J, Shire B, Pickford H, Rabe P, Sterling A, Zarganes-Tzitzikas T, Grimes T, Thompson A, Smith R, Schofield C, Brennan P, Duarte F, Anderson E. Synthesis of meta-substituted arene bioisosteres from [3.1.1]propellane. Nature 2022;611(7937):721-726. https://doi.org/10.1038/s41586-022-05290-z

Burkhard J, Wagner B, Fischer H, Schuler F, Müller K, Carreira E. Synthesis of Azaspirocycles and their Evaluation in Drug Discovery. Angewandte Chemie International Edition 2010;49(20):3524-3527. https://doi.org/10.1002/anie.200907108

Degorce S, Bodnarchuk M, Scott J. Lowering Lipophilicity by Adding Carbon: AzaSpiroHeptanes, a logD Lowering Twist. ACS Medicinal Chemistry Letters 2019;10(8):1198-1204. https://doi.org/10.1021/acsmedchemlett.9b00248

Kirichok A, Shton I, Kliachyna M, Pishel I, Mykhailiuk P. 1‐Substituted 2‐Azaspiro[3.3]heptanes: Overlooked Motifs for Drug Discovery. Angewandte Chemie International Edition 2017;56(30):8865-8869. https://doi.org/10.1002/anie.201703801

Kirichok A, Shton I, Pishel I, Zozulya S, Borysko P, Kubyshkin V, Zaporozhets O, Tolmachev A, Mykhailiuk P. Synthesis of Multifunctional Spirocyclic Azetidines and Their Application in Drug Discovery. Chemistry – A European Journal 2018;24(21):5444-5449. https://doi.org/10.1002/chem.201800193

Cardellini F, Brinchi L, Germani R, Tiecco M. Convenient Esterification of Carboxylic Acids by SN2 Reaction Promoted by a Protic Ionic-Liquid System Formed in Situ in Solvent-Free Conditions. Synthetic Communications 2014;44(22):3248-3256. https://doi.org/10.1080/00397911.2014.933353

Groth T, Meldal M. Synthesis of Aldehyde Building Blocks Protected as Acid Labile N-Boc N,O-Acetals: Toward Combinatorial Solid Phase Synthesis of Novel Peptide Isosteres. Journal of Combinatorial Chemistry 2000;3(1):34-44. https://doi.org/10.1021/cc000057h

Dess D, Martin J. Readily accessible 12-I-5 oxidant for the conversion of primary and secondary alcohols to aldehydes and ketones. The Journal of Organic Chemistry 1983;48(22):4155-4156. https://doi.org/10.1021/jo00170a070

Seyferth D, Marmor R, Hilbert P. Reactions of dimethylphosphono-substituted diazoalkanes. (MeO)2P(O)CR transfer to olefins and 1,3-dipolar additions of (MeO)2P(O)C(N2)R. The Journal of Organic Chemistry 1971;36(10):1379-1386. https://doi.org/10.1021/jo00809a014

Bortolami M, Petrucci R, Rocco D, Scarano V, Chiarotto I. Alkynes as Building Blocks, Intermediates and Products in the Electrochemical Procedures Since 2000. ChemElectroChem 2021;8(19):3604-3613. https://doi.org/10.1002/celc.202100497

Dhameja M, Pandey J. Bestmann–Ohira Reagent: A Convenient and Promising Reagent in the Chemical World. Asian Journal of Organic Chemistry 2018;7(8):1502-1523. https://doi.org/10.1002/ajoc.201800051

Downloads

Published

2023-12-25

Issue

Section

Articles