Chromones Modified with 7-Membered Heterocycles: Synthesis and Biological Activity
DOI:
https://doi.org/10.17721/fujcV11I2P95-116Keywords:
chromones, 7-membered heterocycles, synthesis, biological activityAbstract
The present mini-review for the first time summarizes and systematizes all the data available in the literature on the synthesis and properties of сhromones modified with 7-membered heterocycles throughout the chemical space around the chromone framework. Most of the 2-, 6-, 7- and 8-hetarylsubstituted сhromones are represented in the patent literature and were obtained by nucleophilic substitution in the chromone core with a cyclic amine moiety. Methods for the synthesis of heterocyclic analogs of isoflavones are mainly based on 3-formylchromone, its derivatives, chromonylchalcones and by means of multicomponent reactions.
The biological activity of сhromones substituted with 7-membered heterocycles are also surveyed.
References
Sharma K. Chromone Scaffolds in the Treatment of Alzheimer's and Parkinson's Disease: An Overview. ChemistrySelect 2022;7(18):e202200540. https://doi.org/10.1002/slct.202200540
Madhav H, Jameel E, Rehan M, Hoda N. Recent advancements in chromone as a privileged scaffold towards the development of small molecules for neurodegenerative therapeutics. RSC Medicinal Chemistry 2022;13(3):258-279. https://doi.org/10.1039/d1md00394a
Silva C, Pinto D, Silva A. Chromones: A Promising Ring System for New Anti‐inflammatory Drugs. ChemMedChem 2016;11(20):2252-2260. https://doi.org/10.1002/cmdc.201600359
Gaspar A, Matos M, Garrido J, Uriarte E, Borges F. Chromone: A Valid Scaffold in Medicinal Chemistry. Chemical Reviews 2014;114(9):4960-4992. https://doi.org/10.1021/cr400265z
Radhakrishnan E, Benny A, Arikkatt S, Vazhappilly C, Kannadasan S, Thomas R, Leelabaiamma M, Shanmugam P. Chromone, A Privileged Scaffold in Drug Discovery: Developments in the Synthesis and Bioactivity. Mini-Reviews in Medicinal Chemistry 2022;22(7):1030-1063. https://doi.org/10.2174/1389557521666211124141859
Patil V, Masand N, Verma S, Masand V. Chromones: Privileged scaffold in anticancer drug discovery. Chemical Biology & Drug Design 2021;98(5):943-953. https://doi.org/10.1111/cbdd.13951
Awasthi A, Devi U. Synthesis of some substituted chromones: Review. Progressive Agriculture 2021;21(2):272-282. https://doi.org/10.5958/0976-4615.2021.00046.6
Stefaniak M, Olszewska B. 1,5‐Benzoxazepines as a unique and potent scaffold for activity drugs: A review. Archiv der Pharmazie 2021;354(12):e2100224. https://doi.org/10.1002/ardp.202100224
Nortcliffe A, Moody C. Seven-membered ring scaffolds for drug discovery: Access to functionalised azepanes and oxepanes through diazocarbonyl chemistry. Bioorganic & Medicinal Chemistry 2015;23(11):2730-2735. https://doi.org/10.1016/j.bmc.2015.01.010
Meyer A, Bissember A, Hyland C, Williams C, Szabo M, Pearsall M, Hyland I, Olivier W. Seven-Membered Rings. Progress in Heterocyclic Chemistry 2020;31:597-647. https://doi.org/10.1016/b978-0-12-819962-6.00016-6
Ouvry G. Recent applications of seven-membered rings in drug design. Bioorganic & Medicinal Chemistry 2022;57:116650. https://doi.org/10.1016/j.bmc.2022.116650
Bariwal J, Upadhyay K, Manvar A, Trivedi J, Singh J, Jain K, Shah A. 1,5-Benzothiazepine, a versatile pharmacophore: A review. European Journal of Medicinal Chemistry 2008;43(11):2279-2290. https://doi.org/10.1016/j.ejmech.2008.05.035
Malki Y, Martinez J, Masurier N. 1,3‐Diazepine: A privileged scaffold in medicinal chemistry. Medicinal Research Reviews 2021;41(4):2247-2315. https://doi.org/10.1002/med.21795
Gorbulenko N, Shokol T, Khilya V. 3-Thienyl/benzothienylchromones. Synthesis and properties. French-Ukrainian Journal of Chemistry 2020;8(1):174-183. https://doi.org/10.17721/fujcv8i1p174-183
Gorbulenko N, Shokol T, Khilya V. Isoflavonoids Modified with Azole Heterocycles with Three Heteroatoms. French-Ukrainian Journal of Chemistry 2022;10(1):101-127. https://doi.org/10.17721/fujcv10i1p101-127
Gronowitz S, Ekman R. Synthetic estrogenic isoflavonoids. 1. Synthesis of 3-(2’-thienyl)-5,7-dihydroxychromone. Arkiv. Kemi. 1960;17(9):93-96.
Gorbulenko NV, Khilya VP. Synthesis and biological properties of isoflavonoids modified with nitrogen-containing heterocycles. Ukr. Chem. Journal. 1994;60(1):79-91.
Frasinyuk M, Khilya V. Preparation and reactions of isoflavone heteroanalogs (a review). Chemistry of Heterocyclic Compounds 1999;35(1):3-22. https://doi.org/10.1007/bf02251655
Kanta Ghosh C. Heterocycles Directly Linked to 3-Position of 1-Benzopyran-4-ones. Heterocycles 2004;63(12):2875. https://doi.org/10.3987/rev-04-586
Ghosh C, Patra A. Chemistry and application of 4‐oxo‐4H‐1‐benzopyran‐3‐carboxaldehyde. Journal of Heterocyclic Chemistry 2008;45(6):1529-1547. https://doi.org/10.1002/jhet.5570450601
Eiden F, Rademacher G. Synthese und Reaktionen von 3‐Acyl‐2‐methylthio‐chromonen1). Archiv der Pharmazie 1983;316(1):34-42. https://doi.org/10.1002/ardp.19833160109
Anderson ED, Aronow SD, Boyles NA, Dahlgren MK, Feng S, Gerasyuto AI, Hickey ER, Irvin TC, Kesicki EA, Klippel-Giese A, Knight JL, Kolakowski GR, Kumar M, Long KF, Mayne CG, Mcelligott DL, Mclean JA, Puca L, Ravi KK, Severance DL, Welch MB, Widjaja T, inventors; PETRA PHARMA CORPORATION, applicant. Allosteric chromenone inhibitors of phosphoinositide 3-kinase (PI3K) for the treatment of diseases associated with P13K modulation. WO2021/202964 A1, 2021 Oct 07. Patent Family Members: WO2021/202964 A1; KR20220163462 A; AR121719 A1; AU2021248415 A1; IL296918 A; US2022/372023 A1; TW2022/567 A.
Griffin R, Fontana G, Golding B, Guiard S, Hardcastle I, Leahy J, Martin N, Richardson C, Rigoreau L, Stockley M, Smith G. Selective Benzopyranone and Pyrimido[2,1-a]isoquinolin-4-one Inhibitors of DNA-Dependent Protein Kinase: Synthesis, Structure−Activity Studies, and Radiosensitization of a Human Tumor Cell Line in Vitro. Journal of Medicinal Chemistry 2004;48(2):569-585. https://doi.org/10.1021/jm049526a
Cao R, Zeng H, Zhang H. 3D-QSAR Studies on a Series of Inhibitors Docked into a New Homology Model of the DNA-PK Receptor. Current Pharmaceutical Design 2009;15(32):3796-3825. https://doi.org/10.2174/138161209789649484
Min L, Pan B, Gu Y. Synthesis of Quinoline-Fused 1-Benzazepines through a Mannich-Type Reaction of a C,N-Bisnucleophile Generated from 2-Aminobenzaldehyde and 2-Methylindole. Organic Letters 2016;18(3):364-367. https://doi.org/10.1021/acs.orglett.5b03287
Babu M, Pitchumani K, Ramesh P. Synthesis of 5-benzyl-4-aryl-octahydro-1H-benzo[b][1,5]diazepin-2-ones as potent antidepressant and antimicrobial agents. Medicinal Chemistry Research 2013;23(4):2070-2079. https://doi.org/10.1007/s00044-013-0694-1
Ibrahim M, El-Gohary N. Studies on the Chemical Transformations of Simple Condensates Derived from 3-Formylchromone under Nucleophilic Conditions. Heterocycles 2014;89(2):413. https://doi.org/10.3987/com-13-12899
Sharma V, Kumar P. Synthesis, Spectral Studies and Antibacterial Activity of 3-(4-Phenyl-2,3-dihydro-1,5-benzodiazepin-2-yl)chromone. Asian Journal of Chemistry 2014;26(13):3992-3994. https://doi.org/10.14233/ajchem.2014.16377
Patil RB, Sawant SD, Reddy KV, Shirsat M. Synthesis, Docking Studies and Evaluation of Antioxidant Activity of Some Chromenone Derivatives. Res. J. Pharm. Biol. Chem. Sci. 2015;6(2):381-391.
Tarannum S, Siddiqui Z. Nano silica-bonded N-propylsulfamic acid as an efficient and environmentally benign catalyst for the synthesis of 1,5-benzodiazepines. Monatshefte für Chemie - Chemical Monthly 2016;148(4):717-730. https://doi.org/10.1007/s00706-016-1775-x
Tarannum S, Siddiqui Z. Fe(OTs)3/SiO2: a novel catalyst for the multicomponent synthesis of dibenzodiazepines under solvent-free conditions. RSC Advances 2015;5(91):74242-74250. https://doi.org/10.1039/c5ra12085c
Bonfanti J-F, Doublet FMM, Nyanguile O, Raboisson PJ-MB, Rebstock A-SHM, Boutton CWM, inventor; TIBOTEC PHARMACEUTICALS LTD, assignee. Benzodiazepines as HCV inhibitors. WO 2007/026024 A 2. 08.03.2007 Aug 2.
Levai A. Oxazepines and thiazepines. Part 12. Synthesis of 2,3-dihydro-2,4-diaryl-1,5-benzothiazepines. Pharmazie. 1981;36(6):449-450.
Shanker M, Reddy R, Mouli G, Reddy Y. Synthesis and cleavage reactions of benzothiazepinyl chromone derivatives. Phosphorus, Sulfur, and Silicon and the Related Elements 1989;44(1-2):143-147. https://doi.org/10.1080/10426508908043717
Levai A. Oxazepines and thiazepines. 40. Synthesis of 4-aryl-2-(3-chromonyl)-2,3-dihydro-1,5-benzothiazepines and their conversion into 3-acetyl-2, 3-dihydrobenzothiazoles. Heterocyclic Communications 2002;8(4):375-380. https://doi.org/10.1515/hc.2002.8.4.375
Albanese D, Gaggero N, Fei M. A practical synthesis of 2,3-dihydro-1,5-benzothiazepines. Green Chemistry 2017;19(23):5703-5707. https://doi.org/10.1039/c7gc02097j
Levy SB, Alekshun MN, Podlogar BL, Ohemeng K, Verma AK, Warchol T, Bhatia B, inventor; Paratek Pharmaceuticals, Inc, assignee. Transcription factor modulating compounds and methods of use thereof. United States patent 2003/0229065 A1. 2003 Dec 11. Patent Family Members: AU2002367953A1; AU2002367953B2; AU2002367953C1; AU2008203017A1; CA2445515A1; EP1524974A2; EP1524974A4; JP2005519998A; JP2012144533A; JP4933730B2; US2003229065A1; WO2004001058A2; WO2004001058A3
Ibrahim M, Al-Harbi S, Allehyani E, Alqurashi E, Alqarni A. Utility of 3-chloro-3-(4,9-dimethoxy-5-oxo-5H-furo[3,2-g]chromen-6-yl)prop-2-enal for construction of novel heterocyclic systems: aynthesis, characterization, antimicrobial and anticancer evaluation. Synthetic Communications 2022;52(4):608-621. https://doi.org/10.1080/00397911.2022.2039712
Prajapati D, Singh S, Mahajan A, Sandhu J. A New and Efficient Method for the Generation of Sulfene (Thioformaldehyde Dioxide). Synthesis 1993;45(05):468-470. https://doi.org/10.1055/s-1993-25882
Dengle RV, Deshmukh RN. Synthesis and Antimicrobial evaluation of Chromones bearing 1,5-benzothiazepinyl moiety. Int J Pharm Sci Res 2013;4(4):1495-1498.
Yang T, Karp GM, Qi H, inventor; PTC THERAPEUTICS INC, Current Patent Assignee. 4H-Chromen-4-one derivatives for treating spinal muscular atrophy. EP 2828247 B1. 2019 Jan 16. Bulletin 2019/03. Patent Family Members: BRPI1423483 A2; CA2868026 A1; CA2868026 C; CN104470909 A; CN104470909 B
Oizumi K, Naito S, Nakao A, Shinozuka T, Matsui S, Shimada K, inventors; DAIICHI SANKYO CO, Ltd, applicant: Thienopyridine derivatives. EP 1764367 A1, 2007 Mar 21. Bulletin 2007/12. Patent Family Members: AU2005233437A1; BRPI0509795A; CA2562827A1; CN1968954A; EP1764367A1; MXPA06011799A; NO20065178L; TW200609237A; US2007219234A1; WO2005100365A1; ZA200608494B.
Chapdelaine M, Davenport T, Haeberlein M, Horchler C, Mccauley J, Pierson E, Sohn D, inventors; ASTRAZENECA PLC, current patent assignee. Therapeutic chromone compounds. WO2002/55013 A2. 2002 Jul 07. Patent Family Members: AR035733 A1; AR068413 A2; AU2002217742 B2; BRPI0206512 A; CA2434152 A1.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 French-Ukrainian Journal of Chemistry
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).