Chromones Modified with 7-Membered Heterocycles: Synthesis and Biological Activity


  • Natalia Gorbulenko
  • Tetiana Shokol Department of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska Street, 64/13, Kyiv 01601, Ukraine
  • Volodymyr Khilya Department of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska Street, 64/13, Kyiv 01601, Ukraine



chromones, 7-membered heterocycles, synthesis, biological activity


The present mini-review for the first time summarizes and systematizes all the data available in the literature on the synthesis and properties of сhromones modified with 7-membered heterocycles throughout the chemical space around the chromone framework. Most of the 2-, 6-, 7- and 8-hetarylsubstituted сhromones are represented in the patent literature and were obtained by nucleophilic substitution in the chromone core with a cyclic amine moiety. Methods for the synthesis of heterocyclic analogs of isoflavones are mainly based on 3-formylchromone, its derivatives, chromonylchalcones and by means of multicomponent reactions.

The biological activity of сhromones substituted with 7-membered heterocycles are also surveyed.


Sharma K. Chromone Scaffolds in the Treatment of Alzheimer's and Parkinson's Disease: An Overview. ChemistrySelect 2022;7(18):e202200540.

Madhav H, Jameel E, Rehan M, Hoda N. Recent advancements in chromone as a privileged scaffold towards the development of small molecules for neurodegenerative therapeutics. RSC Medicinal Chemistry 2022;13(3):258-279.

Silva C, Pinto D, Silva A. Chromones: A Promising Ring System for New Anti‐inflammatory Drugs. ChemMedChem 2016;11(20):2252-2260.

Gaspar A, Matos M, Garrido J, Uriarte E, Borges F. Chromone: A Valid Scaffold in Medicinal Chemistry. Chemical Reviews 2014;114(9):4960-4992.

Radhakrishnan E, Benny A, Arikkatt S, Vazhappilly C, Kannadasan S, Thomas R, Leelabaiamma M, Shanmugam P. Chromone, A Privileged Scaffold in Drug Discovery: Developments in the Synthesis and Bioactivity. Mini-Reviews in Medicinal Chemistry 2022;22(7):1030-1063.

Patil V, Masand N, Verma S, Masand V. Chromones: Privileged scaffold in anticancer drug discovery. Chemical Biology & Drug Design 2021;98(5):943-953.

Awasthi A, Devi U. Synthesis of some substituted chromones: Review. Progressive Agriculture 2021;21(2):272-282.

Stefaniak M, Olszewska B. 1,5‐Benzoxazepines as a unique and potent scaffold for activity drugs: A review. Archiv der Pharmazie 2021;354(12):e2100224.

Nortcliffe A, Moody C. Seven-membered ring scaffolds for drug discovery: Access to functionalised azepanes and oxepanes through diazocarbonyl chemistry. Bioorganic & Medicinal Chemistry 2015;23(11):2730-2735.

Meyer A, Bissember A, Hyland C, Williams C, Szabo M, Pearsall M, Hyland I, Olivier W. Seven-Membered Rings. Progress in Heterocyclic Chemistry 2020;31:597-647.

Ouvry G. Recent applications of seven-membered rings in drug design. Bioorganic & Medicinal Chemistry 2022;57:116650.

Bariwal J, Upadhyay K, Manvar A, Trivedi J, Singh J, Jain K, Shah A. 1,5-Benzothiazepine, a versatile pharmacophore: A review. European Journal of Medicinal Chemistry 2008;43(11):2279-2290.

Malki Y, Martinez J, Masurier N. 1,3‐Diazepine: A privileged scaffold in medicinal chemistry. Medicinal Research Reviews 2021;41(4):2247-2315.

Gorbulenko N, Shokol T, Khilya V. 3-Thienyl/benzothienylchromones. Synthesis and properties. French-Ukrainian Journal of Chemistry 2020;8(1):174-183.

Gorbulenko N, Shokol T, Khilya V. Isoflavonoids Modified with Azole Heterocycles with Three Heteroatoms. French-Ukrainian Journal of Chemistry 2022;10(1):101-127.

Gronowitz S, Ekman R. Synthetic estrogenic isoflavonoids. 1. Synthesis of 3-(2’-thienyl)-5,7-dihydroxychromone. Arkiv. Kemi. 1960;17(9):93-96.

Gorbulenko NV, Khilya VP. Synthesis and biological properties of isoflavonoids modified with nitrogen-containing heterocycles. Ukr. Chem. Journal. 1994;60(1):79-91.

Frasinyuk M, Khilya V. Preparation and reactions of isoflavone heteroanalogs (a review). Chemistry of Heterocyclic Compounds 1999;35(1):3-22.

Kanta Ghosh C. Heterocycles Directly Linked to 3-Position of 1-Benzopyran-4-ones. Heterocycles 2004;63(12):2875.

Ghosh C, Patra A. Chemistry and application of 4‐oxo‐4H‐1‐benzopyran‐3‐carboxaldehyde. Journal of Heterocyclic Chemistry 2008;45(6):1529-1547.

Eiden F, Rademacher G. Synthese und Reaktionen von 3‐Acyl‐2‐methylthio‐chromonen1). Archiv der Pharmazie 1983;316(1):34-42.

Anderson ED, Aronow SD, Boyles NA, Dahlgren MK, Feng S, Gerasyuto AI, Hickey ER, Irvin TC, Kesicki EA, Klippel-Giese A, Knight JL, Kolakowski GR, Kumar M, Long KF, Mayne CG, Mcelligott DL, Mclean JA, Puca L, Ravi KK, Severance DL, Welch MB, Widjaja T, inventors; PETRA PHARMA CORPORATION, applicant. Allosteric chromenone inhibitors of phosphoinositide 3-kinase (PI3K) for the treatment of diseases associated with P13K modulation. WO2021/202964 A1, 2021 Oct 07. Patent Family Members: WO2021/202964 A1; KR20220163462 A; AR121719 A1; AU2021248415 A1; IL296918 A; US2022/372023 A1; TW2022/567 A.

Griffin R, Fontana G, Golding B, Guiard S, Hardcastle I, Leahy J, Martin N, Richardson C, Rigoreau L, Stockley M, Smith G. Selective Benzopyranone and Pyrimido[2,1-a]isoquinolin-4-one Inhibitors of DNA-Dependent Protein Kinase: Synthesis, Structure−Activity Studies, and Radiosensitization of a Human Tumor Cell Line in Vitro. Journal of Medicinal Chemistry 2004;48(2):569-585.

Cao R, Zeng H, Zhang H. 3D-QSAR Studies on a Series of Inhibitors Docked into a New Homology Model of the DNA-PK Receptor. Current Pharmaceutical Design 2009;15(32):3796-3825.

Min L, Pan B, Gu Y. Synthesis of Quinoline-Fused 1-Benzazepines through a Mannich-Type Reaction of a C,N-Bisnucleophile Generated from 2-Aminobenzaldehyde and 2-Methylindole. Organic Letters 2016;18(3):364-367.

Babu M, Pitchumani K, Ramesh P. Synthesis of 5-benzyl-4-aryl-octahydro-1H-benzo[b][1,5]diazepin-2-ones as potent antidepressant and antimicrobial agents. Medicinal Chemistry Research 2013;23(4):2070-2079.

Ibrahim M, El-Gohary N. Studies on the Chemical Transformations of Simple Condensates Derived from 3-Formylchromone under Nucleophilic Conditions. Heterocycles 2014;89(2):413.

Sharma V, Kumar P. Synthesis, Spectral Studies and Antibacterial Activity of 3-(4-Phenyl-2,3-dihydro-1,5-benzodiazepin-2-yl)chromone. Asian Journal of Chemistry 2014;26(13):3992-3994.

Patil RB, Sawant SD, Reddy KV, Shirsat M. Synthesis, Docking Studies and Evaluation of Antioxidant Activity of Some Chromenone Derivatives. Res. J. Pharm. Biol. Chem. Sci. 2015;6(2):381-391.

Tarannum S, Siddiqui Z. Nano silica-bonded N-propylsulfamic acid as an efficient and environmentally benign catalyst for the synthesis of 1,5-benzodiazepines. Monatshefte für Chemie - Chemical Monthly 2016;148(4):717-730.

Tarannum S, Siddiqui Z. Fe(OTs)3/SiO2: a novel catalyst for the multicomponent synthesis of dibenzodiazepines under solvent-free conditions. RSC Advances 2015;5(91):74242-74250.

Bonfanti J-F, Doublet FMM, Nyanguile O, Raboisson PJ-MB, Rebstock A-SHM, Boutton CWM, inventor; TIBOTEC PHARMACEUTICALS LTD, assignee. Benzodiazepines as HCV inhibitors. WO 2007/026024 A 2. 08.03.2007 Aug 2.

Levai A. Oxazepines and thiazepines. Part 12. Synthesis of 2,3-dihydro-2,4-diaryl-1,5-benzothiazepines. Pharmazie. 1981;36(6):449-450.

Shanker M, Reddy R, Mouli G, Reddy Y. Synthesis and cleavage reactions of benzothiazepinyl chromone derivatives. Phosphorus, Sulfur, and Silicon and the Related Elements 1989;44(1-2):143-147.

Levai A. Oxazepines and thiazepines. 40. Synthesis of 4-aryl-2-(3-chromonyl)-2,3-dihydro-1,5-benzothiazepines and their conversion into 3-acetyl-2, 3-dihydrobenzothiazoles. Heterocyclic Communications 2002;8(4):375-380.

Albanese D, Gaggero N, Fei M. A practical synthesis of 2,3-dihydro-1,5-benzothiazepines. Green Chemistry 2017;19(23):5703-5707.

Levy SB, Alekshun MN, Podlogar BL, Ohemeng K, Verma AK, Warchol T, Bhatia B, inventor; Paratek Pharmaceuticals, Inc, assignee. Transcription factor modulating compounds and methods of use thereof. United States patent 2003/0229065 A1. 2003 Dec 11. Patent Family Members: AU2002367953A1; AU2002367953B2; AU2002367953C1; AU2008203017A1; CA2445515A1; EP1524974A2; EP1524974A4; JP2005519998A; JP2012144533A; JP4933730B2; US2003229065A1; WO2004001058A2; WO2004001058A3

Ibrahim M, Al-Harbi S, Allehyani E, Alqurashi E, Alqarni A. Utility of 3-chloro-3-(4,9-dimethoxy-5-oxo-5H-furo[3,2-g]chromen-6-yl)prop-2-enal for construction of novel heterocyclic systems: aynthesis, characterization, antimicrobial and anticancer evaluation. Synthetic Communications 2022;52(4):608-621.

Prajapati D, Singh S, Mahajan A, Sandhu J. A New and Efficient Method for the Generation of Sulfene (Thioformaldehyde Dioxide). Synthesis 1993;45(05):468-470.

Dengle RV, Deshmukh RN. Synthesis and Antimicrobial evaluation of Chromones bearing 1,5-benzothiazepinyl moiety. Int J Pharm Sci Res 2013;4(4):1495-1498.

Yang T, Karp GM, Qi H, inventor; PTC THERAPEUTICS INC, Current Patent Assignee. 4H-Chromen-4-one derivatives for treating spinal muscular atrophy. EP 2828247 B1. 2019 Jan 16. Bulletin 2019/03. Patent Family Members: BRPI1423483 A2; CA2868026 A1; CA2868026 C; CN104470909 A; CN104470909 B

Oizumi K, Naito S, Nakao A, Shinozuka T, Matsui S, Shimada K, inventors; DAIICHI SANKYO CO, Ltd, applicant: Thienopyridine derivatives. EP 1764367 A1, 2007 Mar 21. Bulletin 2007/12. Patent Family Members: AU2005233437A1; BRPI0509795A; CA2562827A1; CN1968954A; EP1764367A1; MXPA06011799A; NO20065178L; TW200609237A; US2007219234A1; WO2005100365A1; ZA200608494B.

Chapdelaine M, Davenport T, Haeberlein M, Horchler C, Mccauley J, Pierson E, Sohn D, inventors; ASTRAZENECA PLC, current patent assignee. Therapeutic chromone compounds. WO2002/55013 A2. 2002 Jul 07. Patent Family Members: AR035733 A1; AR068413 A2; AU2002217742 B2; BRPI0206512 A; CA2434152 A1.