Ultrasound Assisted Facile Synthesis of 2-Benzylidenebenzofuran-3(2H)-ones


  • Prerna Batra Department of Chemistry, School of Engineering and Sciences (SOES), GD Goenka University, Gurugram, Haryana, India-122102
  • Dinesh Kumar Department of Chemistry, Kishan Lal Public College, Rewari, India-123401
  • Priyanka Sharma Department of Chemistry, School of Engineering and Sciences (SOES), GD Goenka University, Gurugram, Haryana, India-122102
  • Sonika Sethi Department of Chemistry, School of Engineering and Sciences (SOES), GD Goenka University, Gurugram, Haryana, India-122102




Ultrasound condition, 2-Benzylidenebenzofuran-3(2H)-ones, 1-(2'-Hydroxy-phenyl)-3-phenyl-propenones, Copper Acetate


2-Benzylidenebenzofuran-3(2H)-ones commonly known as aurones, are an important class of oxygen heterocyclic compounds of flavonoid family. They exhibit some biological activities such as antioxidant, antifungal, anticancer, enzyme inhibitory, antiparasitic and antileishmanial activities. They are also responsible for imparting yellow color to the flowers and fruits. Owing to their varied importance, a simple and efficient method for the synthesis of 2-benzylidenebenzofuran-3(2H)-ones involving the reaction of 1-(2'-hydroxy-phenyl)-3-phenyl-propenones with copper acetate in ethanol under ultrasonic irradiation conditions has been described. The present method offers a faster reaction and a higher yield than conventional methods.


Karadendrou M, Kostopoulou I, Kakokefalou V, Tzani A, Detsi A. L-Proline-Based Natural Deep Eutectic Solvents as Efficient Solvents and Catalysts for the Ultrasound-Assisted Synthesis of Aurones via Knoevenagel Condensation. Catalysts 2022;12(3):249. https://doi.org/10.3390/catal12030249

Mazziotti I, Petrarolo G, La Motta C. Aurones: A Golden Resource for Active Compounds. Molecules 2021;27(1):2. https://doi.org/10.3390/molecules27010002

Ono E, Fukuchi-Mizutani M, Nakamura N, Fukui Y, Yonekura-Sakakibara K, Yamaguchi M, Nakayama T, Tanaka T, Kusumi T, Tanaka Y. Yellow flowers generated by expression of the aurone biosynthetic pathway. Proceedings of the National Academy of Sciences 2006;103(29):11075-11080. https://doi.org/10.1073/pnas.0604246103

Geissman T, Heaton C. Anthochlor Pigments. IV. The Pigments of Coreopsis grandiflora, Nutt. I. Journal of the American Chemical Society 1943;65(4):677-683. https://doi.org/10.1021/ja01244a050

Alsayari A, Muhsinah A, Hassan M, Ahsan M, Alshehri J, Begum N. Aurone: A biologically attractive scaffold as anticancer agent. European Journal of Medicinal Chemistry 2019;166:417-431. https://doi.org/10.1016/j.ejmech.2019.01.078

Boumendjel A. Aurones: A Subclass of Flavones with Promising Biological Potential. Current Medicinal Chemistry 2003;10(23):2621-2630. https://doi.org/10.2174/0929867033456468

Haudecoeur R, Boumendjel A. Recent Advances in the Medicinal Chemistry of Aurones. Current Medicinal Chemistry 2012;19(18):2861-2875. https://doi.org/10.2174/092986712800672085

Zwergel C, Gaascht F, Valente S, Diederich M, Bagrel D, Kirsch G. Aurones: Interesting Natural and Synthetic Compounds with Emerging Biological Potential. Natural Product Communications 2012;7(3):1934578X1200700. https://doi.org/10.1177/1934578x1200700322

Kostopoulou I, Tzani A, Polyzos N, Karadendrou M, Kritsi E, Pontiki E, Liargkova T, Hadjipavlou-Litina D, Zoumpoulakis P, Detsi A. Exploring the 2′-Hydroxy-Chalcone Framework for the Development of Dual Antioxidant and Soybean Lipoxygenase Inhibitory Agents. Molecules 2021;26(9):2777. https://doi.org/10.3390/molecules26092777

Detsi A, Majdalani M, Kontogiorgis C, Hadjipavlou-Litina D, Kefalas P. Natural and synthetic 2′-hydroxy-chalcones and aurones: Synthesis, characterization and evaluation of the antioxidant and soybean lipoxygenase inhibitory activity. Bioorganic & Medicinal Chemistry 2009;17(23):8073-8085. https://doi.org/10.1016/j.bmc.2009.10.002

Olleik H, Yahiaoui S, Roulier B, Courvoisier-Dezord E, Perrier J, Pérès B, Hijazi A, Baydoun E, Raymond J, Boumendjel A, Maresca M, Haudecoeur R. Aurone derivatives as promising antibacterial agents against resistant Gram-positive pathogens. European Journal of Medicinal Chemistry 2019;165:133-141. https://doi.org/10.1016/j.ejmech.2019.01.022

Lee E, Song D, Lee J, Pan C, Um B, Jung S. Inhibitory Effect of the Compounds Isolated from Rhus verniciflua on Aldose Reductase and Advanced Glycation Endproducts. Biological and Pharmaceutical Bulletin 2008;31(8):1626-1630. https://doi.org/10.1248/bpb.31.1626

Morimoto M, Fukumoto H, Nozoe T, Hagiwara A, Komai K. Synthesis and Insect Antifeedant Activity of Aurones against Spodoptera litura Larvae. Journal of Agricultural and Food Chemistry 2007;55(3):700-705. https://doi.org/10.1021/jf062562t

Sheng R, Xu Y, Hu C, Zhang J, Lin X, Li J, Yang B, He Q, Hu Y. Design, synthesis and AChE inhibitory activity of indanone and aurone derivatives. European Journal of Medicinal Chemistry 2009;44(1):7-17. https://doi.org/10.1016/j.ejmech.2008.03.003

Kostopoulou I, Detsi A. Recent Developments on Tyrosinase Inhibitors based on the Chalcone and Aurone Scaffolds. Current Enzyme Inhibition 2018;14(1):3-17. https://doi.org/10.2174/1573408013666170208102614

Sui G, Li T, Zhang B, Wang R, Hao H, Zhou W. Recent advances on synthesis and biological activities of aurones. Bioorganic & Medicinal Chemistry 2021;29:115895. https://doi.org/10.1016/j.bmc.2020.115895

Lee C, Chew E, Go M. Functionalized aurones as inducers of NAD(P)H:quinone oxidoreductase 1 that activate AhR/XRE and Nrf2/ARE signaling pathways: Synthesis, evaluation and SAR. European Journal of Medicinal Chemistry 2010;45(7):2957-2971. https://doi.org/10.1016/j.ejmech.2010.03.023

Auf'mkolk M, Koehrle J, Hesch R, Cody V. Inhibition of rat liver iodothyronine deiodinase. Interaction of aurones with the iodothyronine ligand-binding site. Journal of Biological Chemistry 1986;261(25):11623-11630. https://doi.org/10.1016/s0021-9258(18)67288-6

Júnior G, de M. Sousa C, Cavalheiro A, Lago J, Chaves M. Phenolic Derivatives from Fruits of Dipteryx lacunifera Ducke and Evaluation of Their Antiradical Activities. Helvetica Chimica Acta 2008;91(11):2159-2167. https://doi.org/10.1002/hlca.200890233

Huang L, Wall M, Wani M, Navarro H, Santisuk T, Reutrakul V, Seo E, Farnsworth N, Kinghorn A. New Compounds with DNA Strand-Scission Activity from the Combined Leaf and Stem of Uvaria hamiltonii. Journal of Natural Products 1998;61(4):446-450. https://doi.org/10.1021/np9703609

Kumar G, Lathwal E, Saroha B, Kumar S, Kumar S, Chauhan N, Kumar T. Synthesis and Biological Evaluation of Quinoline‐Based Novel Aurones. ChemistrySelect 2020;5(12):3539-3543. https://doi.org/10.1002/slct.201904912

Berdnikova D, Steup S, Bolte M, Suta M. Design of Aurone‐Based Dual‐State Emissive (DSE) Fluorophores. Chemistry – A European Journal 2023;29(27):e202300356. https://doi.org/10.1002/chem.202300356

Venkateswarlu S, Panchagnula G, Gottumukkala A, Subbaraju G. Synthesis, structural revision, and biological activities of 4′-chloroaurone, a metabolite of marine brown alga Spatoglossum variabile. Tetrahedron 2007;63(29):6909-6914. https://doi.org/10.1016/j.tet.2007.04.048

Sekizaki H. Synthesis of 2-Benzylidene-3(2H)-benzofuran-3-ones (Aurones) by Oxidation of 2′-Hydroxychalcones with Mercury(II) Acetate. Bulletin of the Chemical Society of Japan 1988;61(4):1407-1409. https://doi.org/10.1246/bcsj.61.1407

Thakkar K, Cushman M. A Novel Oxidative Cyclization of 2'-Hydroxychalcones to 4,5-Dialkoxyaurones by Thallium(III) Nitrate. The Journal of Organic Chemistry 1995;60(20):6499-6510. https://doi.org/10.1021/jo00125a041

Geissman T, Harborne J. Anthochlor Pigments. X. Aureusin and Cernuoside. Journal of the American Chemical Society 1955;77(17):4622-4624. https://doi.org/10.1021/ja01622a054

Villemin D, Martin B, Bar N. Application of Microwave in Organic Synthesis. Dry Synthesis of 2-Arylmethylene-3(2)-naphthofuranones. Molecules 1998;3(8):88-93. https://doi.org/10.3390/30300088

Thomas M, Lawson C, Allanson N, Leslie B, Bottomley J, McBride A, Olusanya O. A series of 2(Z)-2-Benzylidene-6,7-dihydroxybenzofuran-3[2H]-ones as inhibitors of chorismate synthase. Bioorganic & Medicinal Chemistry Letters 2003;13(3):423-426. https://doi.org/10.1016/s0960-894x(02)00957-5

Manjulatha K, Srinivas S, Mulakayala N, Rambabu D, Prabhakar M, Arunasree K, Alvala M, Basaveswara Rao M, Pal M. Ethylenediamine diacetate (EDDA) mediated synthesis of aurones under ultrasound: Their evaluation as inhibitors of SIRT1. Bioorganic & Medicinal Chemistry Letters 2012;22(19):6160-6165. https://doi.org/10.1016/j.bmcl.2012.08.017

Farkas L, Nogradi M, Pallos L. The correct structure and synthesis of rengasine. Tetrahedron Letters 1963;4(28):1999-2000. https://doi.org/10.1016/s0040-4039(01)90957-8

Hawkins I, Handy S. Synthesis of aurones under neutral conditions using a deep eutectic solvent. Tetrahedron 2013;69(44):9200-9204. https://doi.org/10.1016/j.tet.2013.08.060

Varma R, Varma M. Alumina-mediated condensation. A simple synthesis of aurones. Tetrahedron Letters 1992;33(40):5937-5940. https://doi.org/10.1016/s0040-4039(00)61093-6

Bose G, Mondal E, Khan A, Bordoloi M. An environmentally benign synthesis of aurones and flavones from 2′-acetoxychalcones using n-tetrabutylammonium tribromide. Tetrahedron Letters 2001;42(50):8907-8909. https://doi.org/10.1016/s0040-4039(01)01938-4

Harkat H, Blanc A, Weibel J, Pale P. Versatile and Expeditious Synthesis of Aurones via Au I-Catalyzed Cyclization. The Journal of Organic Chemistry 2008;73(4):1620-1623. https://doi.org/10.1021/jo702197b

Kraus G, Gupta V. Divergent Approach to Flavones and Aurones via Dihaloacrylic Acids. Unexpected Dependence on the Halogen Atom. Organic Letters 2010;12(22):5278-5280. https://doi.org/10.1021/ol1023294

Weng Y, Chen Q, Su W. Copper-Catalyzed Intramolecular Tandem Reaction of (2-Halogenphenyl)(3-phenyloxiran-2-yl)methanones: Synthesis of (Z)-Aurones. The Journal of Organic Chemistry 2014;79(9):4218-4224. https://doi.org/10.1021/jo500483u

Brahmachari G, Nayek N, Mandal M, Bhowmick A, Karmakar I. Ultrasound-promoted Organic Synthesis - A Recent Update. Current Organic Chemistry 2021;25(13):1539-1565. https://doi.org/10.2174/1385272825666210316122319

Majhi S. Applications of ultrasound in total synthesis of bioactive natural products: A promising green tool. Ultrasonics Sonochemistry 2021;77:105665. https://doi.org/10.1016/j.ultsonch.2021.105665

Umarudin U, Rahayu S, Widyarti S, Warsito W. Characterization, Antioxidant Activity, and In Silico Molecular Docking of Chitosan from Snail Shell Waste by Ultrasonic Technique. Chemistry & Chemical Technology 2023;17(1):126-132. https://doi.org/10.23939/chcht17.01.126

Heydari S, Habibi D, Faraji A. A Green and Efficient Solvent- and Catalyst-Free Ultrasonic Dibenzylation Procedure. Chemistry & Chemical Technology 2022;16(1):126-132. https://doi.org/10.23939/chcht16.01.126

Starchevskyy V, Bernatska N, Typilo I, Oliynyk L, Strogan O. Establishment of the Regularities of the Concentrations Change of Microorganisms and Water-Soluble Compounds in Polluted Water after Ultrasound Treatment. Chemistry & Chemical Technology 2021;15(3):408-413. https://doi.org/10.23939/chcht15.03.408

Sukhatskiy Y, Znak Z, Zin O, Chupinskyi D. Ultrasonic Cavitation in Wastewater Treatment from Azo Dye Methyl Orange. Chemistry & Chemical Technology 2021;15(2):284-290. https://doi.org/10.23939/chcht15.02.284

Zaczynska E, Czarny A, Karpenko O, Vasylyuk S, Monka N, Stadnytska N, Fizer L, Komarovska-Porokhnyavets O, Jaranowski M, Lubenets V, Zimecki M. Obtaining and determining antiviral and antibacterial activity of S-esters of 4-R-aminobenzenethiosulfonic acid. Chemistry & Chemical Technology 2023;17:315–324. https://doi.org/10.23939/chcht17.02.315

Kumar S, Sharma D. Ultrasound promoted green synthesis of benzofuran substituted thiazolo[3,2-b][1,2,4]triazoles. Green Processing and Synthesis 2016;6(1):73-77. https://doi.org/10.1515/gps-2016-0099

Kumar S, Lamba M, Makrandi J. An efficient green procedure for the synthesis of chalcones using C-200 as solid support under grinding conditions. Green Chemistry Letters and Reviews 2008;1(2):123-125. https://doi.org/10.1080/17518250802325993

Agrawal NN, Soni PA. A New Process for the Synthesis of Aurones by Using Mercury (II) Acetate in Pyridine and Cupric Bromide in Dimethyl Sulfoxide. Indian J. Chem. 2006;45B:1301–1303.

Kumar S. An improved one-pot and eco-friendly synthesis of aurones under solvent-free conditions. Green Chemistry Letters and Reviews 2014;7(1):95-99. https://doi.org/10.1080/17518253.2014.895867