Complexation of 1,3-dihetaryl-5-phenyl-2-pyrazoline Derivatives with Polyvalent Metal Ions: Quantum Chemical Modeling and Experimental Investigation
DOI:
https://doi.org/10.17721/fujcV10I1P155-174Keywords:
1,3,5-triaryl-2-pyrazoline, pyridine, benzimidazole, spectrophotometric and fluorescence analysis, complexation, polyvalent metal ions, quantum-chemical calculations, benzothiazole, Bader's atoms-in-molecules (AIM) theoryAbstract
1,3,5-Triaryl-2-pyrazoline derivatives with a pyridine ring in position 1 and 2-benzimidazolyl or 2-benzothiazolyl bicycles in position 3 were synthesized. Spectral properties in solvents of similar polarity, i.e. aprotic acetonitrile and in protic methanol, were studied, complexation with cadmium and mercury ions in acetonitrile was elucidated as well. Quantum-chemical modeling with application of the elements of Bader's atoms-in-molecules (AIM) theory of the title molecules conformational structure and 1:1 stoichiometry complexes formed with polyvalent metals of various nature (Mg, Zn, Cd, Pb, Hg, Ba) was conducted. The principal possibility of “nitrogen-sulfur” switching of the metal ions binding sites for the benzothiazole derivative was revealed, and makes possible to classify this compound as “smart ligand”.
References
Nolan E, Lippard S. Small-Molecule Fluorescent Sensors for Investigating Zinc Metalloneurochemistry. Accounts of Chemical Research 2008;42(1):193-203. https://doi.org/10.1021/ar8001409
Wu J, Liu W, Ge J, Zhang H, Wang P. New sensing mechanisms for design of fluorescent chemosensors emerging in recent years. Chemical Society Reviews 2011;40(7):3483. https://doi.org/10.1039/c0cs00224k
Li M, Gou H, Al-Ogaidi I, Wu N. Nanostructured Sensors for Detection of Heavy Metals: A Review. ACS Sustainable Chemistry & Engineering 2013;1(7):713-723. https://doi.org/10.1021/sc400019a
Carter K, Young A, Palmer A. Fluorescent Sensors for Measuring Metal Ions in Living Systems. Chemical Reviews 2014;114(8):4564-4601. https://doi.org/10.1021/cr400546e
Chowdhury S, Rooj B, Dutta A, Mandal U. Review on Recent Advances in Metal Ions Sensing Using Different Fluorescent Probes. Journal of Fluorescence 2018;28(4):999-1021. https://doi.org/10.1007/s10895-018-2263-y
Patil N, Dhake R, Ahamed M, Fegade U. A Mini Review on Organic Chemosensors for Cation Recognition (2013-19). Journal of Fluorescence 2020;30(6):1295-1330. https://doi.org/10.1007/s10895-020-02554-7
Shao N, Gao X, Wang H, Yang R, Chan W. Spiropyran-based optical approaches for mercury ion sensing: Improving sensitivity and selectivity via cooperative ligation interactions using cysteine. Analytica Chimica Acta 2009;655(1-2):1-7. https://doi.org/10.1016/j.aca.2009.09.038
Baldrighi M, Locatelli G, Desper J, Aakeröy C, Giordani S. Probing Metal Ion Complexation of Ligands with Multiple Metal Binding Sites: The Case of Spiropyrans. Chemistry - A European Journal 2016;22(39):13976-13984. https://doi.org/10.1002/chem.201602608
Eshtiagh-Hosseini H, Aghabozorg H, Mirzaei M, Amini M, Chen Y, Shokrollahi A, Aghaei R. Diversity in coordination behavior of dipicolinic acid with lead(II), calcium(II), and nickel(II) in the presence of pyrazine and 2-amino-4-methylpyridine spacers in construction of three supramolecular architectures. Journal of Molecular Structure 2010;973(1-3):180-189. https://doi.org/10.1016/j.molstruc.2010.03.068
Koner R, Sinha S, Kumar S, Nandi C, Ghosh S. 2-Aminopyridine derivative as fluorescence ‘On–Off’ molecular switch for selective detection of Fe3+/Hg2+. Tetrahedron Letters 2012;53(18):2302-2307. https://doi.org/10.1016/j.tetlet.2012.02.094
Mandal S, Ghosh S, Banerjee C, Kuchlyan J, Sarkar N. Unique Photophysical Behavior of 2,2′-Bipyridine-3,3′-diol in DMSO–Water Binary Mixtures: Potential Application for Fluorescence Sensing of Zn2+ Based on the Inhibition of Excited-State Intramolecular Double Proton Transfer. The Journal of Physical Chemistry B 2013;117(40):12212-12223. https://doi.org/10.1021/jp406853r
Vosough Razavi B, Badiei A, Lashgari N, Mohammadi Ziarani G. 2,6-Bis(2-Benzimidazolyl)Pyridine Fluorescent Red-Shifted Sensor for Recognition of Zinc(II) and a Calorimetric Sensor for Iron Ions. Journal of Fluorescence 2016;26(5):1723-1728. https://doi.org/10.1007/s10895-016-1863-7
Ruan Y, Xie J. Unexpected highly selective fluorescence ‘turn-on’ and ratiometric detection of Hg2+ based on fluorescein platform. Tetrahedron 2011;67(45):8717-8723. https://doi.org/10.1016/j.tet.2011.09.028
Yang X, Li Y, Bai Q. A highly selective and sensitive fluorescein-based chemodosimeter for Hg2+ ions in aqueous media. Analytica Chimica Acta 2007;584(1):95-100. https://doi.org/10.1016/j.aca.2006.11.015
Chen J, Zheng A, Chen A, Gao Y, He C, Kai X, Wu G, Chen Y. A functionalized gold nanoparticles and Rhodamine 6G based fluorescent sensor for high sensitive and selective detection of mercury(II) in environmental water samples. Analytica Chimica Acta 2007;599(1):134-142. https://doi.org/10.1016/j.aca.2007.07.074
Huang J, Xu Y, Qian X. A Rhodamine-Based Hg2+ Sensor with High Selectivity and Sensitivity in Aqueous Solution: A NS2- Containing Receptor. The Journal of Organic Chemistry 2009;74(5):2167-2170. https://doi.org/10.1021/jo802297x
Mao J, He Q, Liu W. An rhodamine-based fluorescence probe for iron(III) ion determination in aqueous solution. Talanta 2010;80(5):2093-2098. https://doi.org/10.1016/j.talanta.2009.11.013
Kumar M, Kumar N, Bhalla V. Rhodamine appended thiacalix[4]arene of 1,3-alternate conformation for nanomolar detection of Hg2+ ions. Sensors and Actuators B: Chemical 2012;161(1):311-316. https://doi.org/10.1016/j.snb.2011.10.037
Ling L, Zhao Y, Du J, Xiao D. An optical sensor for mercuric ion based on immobilization of Rhodamine B derivative in PVC membrane. Talanta 2012;91:65-71. https://doi.org/10.1016/j.talanta.2012.01.013
Wang F, Nam S, Guo Z, Park S, Yoon J. A new rhodamine derivative bearing benzothiazole and thiocarbonyl moieties as a highly selective fluorescent and colorimetric chemodosimeter for Hg2+. Sensors and Actuators B: Chemical 2012;161(1):948-953. https://doi.org/10.1016/j.snb.2011.11.070
Kuchlyan J, Basak S, Dutta D, Das A, Mal D, Sarkar N. A new rhodamine derived fluorescent sensor: Detection of Hg2+ at cellular level. Chemical Physics Letters 2017;673:84-88. https://doi.org/10.1016/j.cplett.2017.02.003
Wan J, Zhang K, Li C, Li Y, Niu S. A novel fluorescent chemosensor based on a rhodamine 6G derivative for the detection of Pb2+ ion. Sensors and Actuators B: Chemical 2017;246:696-702. https://doi.org/10.1016/j.snb.2017.02.126
Carturan S, Quaranta A, Maggioni G, Bonafini M, Della Mea G. 3-Hydroxyflavone-based wavelength shifting systems for near UV optical sensors. Sensors and Actuators A: Physical 2004;113(3):288-292. https://doi.org/10.1016/j.sna.2004.01.048
de la Rosa-Romo L, Oropeza-Guzmán M, Olivas-Sarabia A, Pina-Luis G. Flavone functionalized magnetic nanoparticles: A new fluorescent sensor for Cu2+ ions with nanomolar detection limit. Sensors and Actuators B: Chemical 2016;233:459-468. https://doi.org/10.1016/j.snb.2016.04.113
Gao H, Wu X. A 3-hydroxyflavone derivative as fluorescence chemosensor for copper and zinc ions. Chemistry of Heterocyclic Compounds 2018;54(2):125-129. https://doi.org/10.1007/s10593-018-2243-9
Yang S, Hu Z, Guo D. Novel flavonoid derivatives and their corresponding rare earth complexes: Synthesis and luminescent properties. Journal of Luminescence 2021;237:118195. https://doi.org/10.1016/j.jlumin.2021.118195
Michalík M, Biela M, Cagardová D, Lukeš V. Chelates of 3- and 5-hydroxyflavone: Quantum chemical study. Chemical Physics Letters 2021;762:138142. https://doi.org/10.1016/j.cplett.2020.138142
Kamecki F, Marcucci C, Ferreira-Gomes M, Sabatier L, Knez D, Gobec S, Monti J, Rademacher M, Marcos A, de Tezanos Pinto F, Gavernet L, Colettis N, Marder M. 2’-Hydroxy-4’,5’-dimethyl-4-dimethylaminochalcone, a novel fluorescent flavonoid with capacity to detect aluminium in cells and modulate Alzheimer’s disease targets. Journal of Photochemistry and Photobiology A: Chemistry 2021;409:113137. https://doi.org/10.1016/j.jphotochem.2021.113137
Qin T, Liu B, Xu Z, Yao G, Xu H, Zhao C. Flavonol-based small-molecule fluorescent probes. Sensors and Actuators B: Chemical 2021;336:129718. https://doi.org/10.1016/j.snb.2021.129718
Drabovich A, Berezovski M, Musheev M, Krylov S. Selection of Smart Small-Molecule Ligands: The Proof of Principle. Analytical Chemistry 2008;81(1):490-494. https://doi.org/10.1021/ac8023813
Dondaine L, Escudero D, Ali M, Richard P, Denat F, Bettaieb A, Le Gendre P, Paul C, Jacquemin D, Goze C, Bodio E. Coumarin‐Phosphine‐Based Smart Probes for Tracking Biologically Relevant Metal Complexes: From Theoretical to Biological Investigations. European Journal of Inorganic Chemistry 2016;2016(4):545-553. https://doi.org/10.1002/ejic.201501304
Banerjee M, Ghosh M, Ta S, Das J, Das D. A smart optical probe for detection and discrimination of Zn2+, Cd2+ and Hg2+ at nano-molar level in real samples. Journal of Photochemistry and Photobiology A: Chemistry 2019;377:286-297. https://doi.org/10.1016/j.jphotochem.2019.04.002
Chumak AY, Kordubailo MV, Vodolazhenko MA, Kotliar VM, Doroshenko AO. Derivatives of 1,3,5 triaryl-2-pyrazoline with additional heterocyclic moieties in position 1 as potential fluorescent chemosensing compounds for detection of polyvalent metals cations. Kharkiv University Bulletin Chemical Series. 2018;31(54):32-43.
Melhuish W. Absolute spectrofluorometry. Journal of Research of the National Bureau of Standards Section A: Physics and Chemistry 1972;76A(6):547. https://doi.org/10.6028/jres.076a.049
Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, et al. Gaussian 09, Revision B.01. Wallingford CT: Gaussian, Inc.; 2010.
Zhao Y, Schultz N, Truhlar D. Design of Density Functionals by Combining the Method of Constraint Satisfaction with Parametrization for Thermochemistry, Thermochemical Kinetics, and Noncovalent Interactions. Journal of Chemical Theory and Computation 2006;2(2):364-382. https://doi.org/10.1021/ct0502763
Woon D, Dunning T. Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon. The Journal of Chemical Physics 1993;98(2):1358-1371. https://doi.org/10.1063/1.464303
Canal Neto A, Muniz E, Centoducatte R, Jorge F. Gaussian basis sets for correlated wave functions. Hydrogen, helium, first- and second-row atoms. Journal of Molecular Structure: THEOCHEM 2005;718(1-3):219-224. https://doi.org/10.1016/j.theochem.2004.11.037
de Oliveira P, Barros C, Jorge F, Canal Neto A, Campos M. Augmented Gaussian basis set of double zeta valence quality for the atoms Rb and Y–Xe: Application in DFT calculations of molecular electric properties. Journal of Molecular Structure: THEOCHEM 2010;948(1-3):43-46. https://doi.org/10.1016/j.theochem.2010.02.017
Bader R. Atoms in molecules. Accounts of Chemical Research 1985;18(1):9-15. https://doi.org/10.1021/ar00109a003
Bader R. A quantum theory of molecular structure and its applications. Chemical Reviews 1991;91(5):893-928. https://doi.org/10.1021/cr00005a013
Bader R. A Bond Path: A Universal Indicator of Bonded Interactions. The Journal of Physical Chemistry A 1998;102(37):7314-7323. https://doi.org/10.1021/jp981794v
Biegler-König F, Schönbohm J, Bayles D. AIM2000 - A Program to Analyze and Visualize Atoms in Molecules. Journal of Computational Chemistry. 2001;22(5):545-59. https://doi.org/10.1002/1096-987x(20010415)22:5<545::aid-jcc1027>3.0.co;2-y
Dunning TH, Hay PJ. Gaussian Basis Sets for Molecular Calculations. In: Schaefer HF, editor. Methods of Electronic Structure Theory. Boston, MA: Springer US; 1977. p. 1-27. https://doi.org/10.1007/978-1-4757-0887-5_1
Espinosa E, Molins E, Lecomte C. Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities. Chemical Physics Letters 1998;285(3-4):170-173. https://doi.org/10.1016/s0009-2614(98)00036-0
Zhikol O, Shishkin O. Estimating stacking interaction energy using atom in molecules properties: Homodimers of benzene and pyridine. International Journal of Quantum Chemistry 2012;112(18):3008-3017. https://doi.org/10.1002/qua.24189
Shannon R. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A 1976;32(5):751-767. https://doi.org/10.1107/s0567739476001551
Peng C, Ayala P, Schlegel H, Frisch M. Using redundant internal coordinates to optimize equilibrium geometries and transition states. Journal of Computational Chemistry 1996;17(1):49-56. https://doi.org/10.1002/(sici)1096-987x(19960115)17:1<49::aid-jcc5>3.0.co;2-0
Doroshenko A, Skripkina V, Schershukov V, Ponomaryov O. Fluorescence quenching in bichromophoric systems with nonconjugated chromophores: 5-substituted derivatives of l,3,5-triaryl-2-pyrazoline. Journal of Fluorescence 1997;7(2):131-138. https://doi.org/10.1007/bf02760504
Krasovitskii B, Pereyaslova D, Skripkina V, Yagupolskii L, Popov V. Organic luminophores with fluorine-containing substituents. Dyes and Pigments 1988;9(1):21-35. https://doi.org/10.1016/0143-7208(88)85002-2
Letrun R, Lang B, Yushchenko O, Wilcken R, Svechkarev D, Kolodieznyi D, Riedle E, Vauthey E. Excited-state dynamics of a molecular dyad with two orthogonally-oriented fluorophores. Physical Chemistry Chemical Physics 2018;20(48):30219-30230. https://doi.org/10.1039/c8cp05356a
Ermolaev V, Sveshnikova E. Limits to the applicability of the rule of equality to unity of the sum of quantum yields of fluorescence and transition to the triplet state for complex organic molecules in the condensed phase (A review). Optics and Spectroscopy 2015;119(4):642-655. https://doi.org/10.1134/s0030400x15100112
Plotnikov V. Regularities of the processes of radiationless conversion in polyatomic molecules. International Journal of Quantum Chemistry 1979;16(3):527-541. https://doi.org/10.1002/qua.560160311
Plotnikov V. Theoretical Foundations of the Classification of Molecules by Luminescence Spectra. Russian Chemical Reviews 1980;49(2):172-189. https://doi.org/10.1070/rc1980v049n02abeh002452
Lippert E, Rettig W, Bonacic-Koutecky V, Heisel F, Miehe JA. Photophysics of internal twisting. In: Prigogine I, Rice SA, editors. Advances in Chemical physics. 68. Hoboken, NJ, USA: John Wiley & Sons, Inc.; 1987. p. 1-174. https://doi.org/10.1002/9780470142967.ch1
Grabowski Z, Rotkiewicz K, Rettig W. Structural Changes Accompanying Intramolecular Electron Transfer: Focus on Twisted Intramolecular Charge-Transfer States and Structures. Chemical Reviews 2003;103(10):3899-4032. https://doi.org/10.1021/cr940745l
Doroshenko A, Kirichenko A, Mitina V, Ponomaryov O. Spectral properties and dynamics of the excited state structural relaxation of the ortho analogues of POPOP — Effective abnormally large Stokes shift luminophores. Journal of Photochemistry and Photobiology A: Chemistry 1996;94(1):15-26. https://doi.org/10.1016/1010-6030(95)04203-2
Iliashenko R, Zozulia O, Doroshenko A. High Stokes shift long-wavelength energy gap regulated fluorescence in the series of nitro/dimethylamino-substituted ortho-analogs of POPOP. Open Chemistry 2011;9(6):962-971. https://doi.org/10.2478/s11532-011-0092-9
Demchenko A. The problem of self-calibration of fluorescence signal in microscale sensor systems. Lab on a Chip 2005;5(11):1210. https://doi.org/10.1039/b507447a
Demchenko A. The Concept of λ-Ratiometry in Fluorescence Sensing and Imaging. Journal of Fluorescence 2010;20(5):1099-1128. https://doi.org/10.1007/s10895-010-0644-y
Demchenko A. Practical aspects of wavelength ratiometry in the studies of intermolecular interactions. Journal of Molecular Structure 2014;1077:51-67. https://doi.org/10.1016/j.molstruc.2013.11.045
Nolan E, Lippard S. Tools and Tactics for the Optical Detection of Mercuric Ion. Chemical Reviews 2008;108(9):3443-3480. https://doi.org/10.1021/cr068000q
Callan J, de Silva A, Magri D. Luminescent sensors and switches in the early 21st century. Tetrahedron 2005;61(36):8551-8588. https://doi.org/10.1016/j.tet.2005.05.043
Ellairaja S, Manikandan R, Vijayan M, Rajagopal S, Vasantha V. A simple highly sensitive and selective TURN-ON fluorescent chemosensor for the detection of cadmium ions in physiological conditions. RSC Advances 2015;5(78):63287-63295. https://doi.org/10.1039/c5ra10612e
Ma J, Dong Y, Yu Z, Wu Y, Zhao Z. A pyridine based Schiff base as a selective and sensitive fluorescent probe for cadmium ions with “turn-on” fluorescence responses. New Journal of Chemistry 2022;46(7):3348-3357. https://doi.org/10.1039/d1nj05919j
Li M, Lu H, Liu R, Chen J, Chen C. Turn-On Fluorescent Sensor for Selective Detection of Zn2+, Cd2+, and Hg2+ in Water. The Journal of Organic Chemistry 2012;77(7):3670-3673. https://doi.org/10.1021/jo3002744
Sharma P, Bhogal S, Lealam A, Kumar S, Yusuf M, Malik A. Experimental and Theoretical Studies of the Pyrazoline Derivative 5-(4-methylphenyl)-3-(5-methylfuran-2-yl)-1-phenyl-4,5-dihydro-1H-Pyrazole and its Application for Selective Detection of Cd2+ ion as Fluorescent Sensor. Journal of Fluorescence 2022;32(3):969-981. https://doi.org/10.1007/s10895-022-02906-5
Wang H, Wu S. Highly selective fluorescent sensors for mercury(II) ions and their applications in living cell imaging. Tetrahedron 2013;69(8):1965-1969. https://doi.org/10.1016/j.tet.2012.12.075
Kao S, Wu S. A fluorescent turn-on probe for Hg(II) based on an NTe2 chelating motif and its application in living cell imaging. Sensors and Actuators B: Chemical 2015;212:382-388. https://doi.org/10.1016/j.snb.2015.02.053
Vedamalai M, Wu S. A BODIPY-based colorimetric and fluorometric chemosensor for Hg(ii) ions and its application to living cell imaging. Organic & Biomolecular Chemistry 2012;10(28):5410. https://doi.org/10.1039/c2ob25589h
Bozkurt E, Gul H. Selective fluorometric “Turn-off” sensing for Hg2+ with pyrazoline compound and its application in real water sample analysis. Inorganica Chimica Acta 2020;502:119288. https://doi.org/10.1016/j.ica.2019.119288
Saleem M, Khang C, kim M, Lee K. Chromo/Fluorogenic Detection of Co2+, Hg2+ and Cu2+ by the Simple Schiff Base Sensor. Journal of Fluorescence 2015;26(1):11-22. https://doi.org/10.1007/s10895-015-1723-x
Svechkarev D, Dereka B, Doroshenko A. Mercury Ions Complexation with a Series of Heterocyclic Derivatives of 3-Hydroxychromone: Spectral Effects and Prospects for Ultrasensitive Hg2+ Probing. The Journal of Physical Chemistry A 2011;115(17):4223-4230. https://doi.org/10.1021/jp110974n
Gauthama B, Narayana B, Sarojini B, Suresh N, Sangappa Y, Kudva A, Satyanarayana G, Raghu S. Colorimetric “off–on” fluorescent probe for selective detection of toxic Hg2+ based on rhodamine and its application for in-vivo bioimaging. Microchemical Journal 2021;166:106233. https://doi.org/10.1016/j.microc.2021.106233
Downloads
Published
Issue
Section
License
Copyright (c) 2022 French-Ukrainian Journal of Chemistry

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).