Removal of Phosphates in Aqueous Solution by Adsorption on Calcium Oxide

Authors

  • Asma Belaidouni Laboratory of Materials LABMAT, National Polytechnic School, ENPO Maurice Audin, BP 1523 EL Menaouer, Oran, Algeria.
  • Zohra Dali-Youcef Laboratory of Materials LABMAT, National Polytechnic School, ENPO Maurice Audin, BP 1523 EL Menaouer, Oran, Algeria.
  • Tarik Attar Higher School of Applied Sciences, P.O. Box 165 RP, Tlemcen, 13000, Algeria
  • Samir Bekheira Laboratory of Materials LABMAT, National Polytechnic School, ENPO Maurice Audin, BP 1523 EL Menaouer, Oran, Algeria.
  • Rim Belbal MaterialsPhysicsLaboratory, UniversityThelidji Amar, Laghouat, Post Office Box 37G, Laghouat 03000, Algeria.

DOI:

https://doi.org/10.17721/fujcV10I1P142-154

Keywords:

Phosphates, Eutrophication, calcium oxide, Adsorption

Abstract

The aim of this work is the removal of phosphates from an aqueous solution by adsorption on a new, inexpensive adsorbent, calcium oxide. We have also shown interest in the choice of removal method, which is adsorption. The kinetic study of the removal of phosphate ions by adsorption on calcium oxide allowed us to calculate the value of adsorption capacity as a function of the parameters affecting adsorption: Amount of adsorbent, initial concentration of phosphate ion solution, pH of the mixture and temperature. The study of adsorption isotherms showed that the Freundlich model is the most appropriate for the phenomenon of phosphate ion adsorption. Modeling of the kinetic data by the pseudo-first order and pseudo-second order equations shows that the adsorption process is best described by the second order equation. Thermodynamic parameters such as enthalpy Δ, entropy Δ and free enthalpy Δ were also evaluated to determine the nature of adsorption. The results show that the adsorption process is a spontaneous and endothermic physisorption.

References

Merhabi F, Amine H, Halwani J. Evaluation de la qualité des eaux de surface de la rivière Kadicha. Lebanese Science Journal 2019;20(1):10-34. https://doi.org/10.22453/lsj-020.1.010-034

Jung K, Lee S, Lee Y. Synthesis of novel magnesium ferrite (MgFe2O4)/biochar magnetic composites and its adsorption behavior for phosphate in aqueous solutions. Bioresource Technology 2017;245:751-759. https://doi.org/10.1016/j.biortech.2017.09.035

Kellil A, Bensafia D. Élimination des phosphates par filtration directe sur lit de sable. Revue des sciences de l'eau 2005;16(3):317-332. https://doi.org/10.7202/705510ar

Grubb D. Phosphate immobilization using an acidic type F fly ash. Journal of Hazardous Materials 2000;76(2-3):217-236. https://doi.org/10.1016/s0304-3894(00)00200-4

Vikrant K, Kim K, Ok Y, Tsang D, Tsang Y, Giri B, Singh R. Engineered/designer biochar for the removal of phosphate in water and wastewater. Science of The Total Environment 2018;616-617:1242-1260. https://doi.org/10.1016/j.scitotenv.2017.10.193

Agyei N, Strydom C, Potgieter J. An investigation of phosphate ion adsorption from aqueous solution by fly ash and slag. Cement and Concrete Research 2000;30(5):823-826. https://doi.org/10.1016/s0008-8846(00)00225-8

Köse T, Kıvanç B. Adsorption of phosphate from aqueous solutions using calcined waste eggshell. Chemical Engineering Journal 2011;178:34-39. https://doi.org/10.1016/j.cej.2011.09.129

Grzmil B, Wronkowski J. Removal of phosphates and fluorides from industrial wastewater. Desalination 2006;189(1-3):261-268. https://doi.org/10.1016/j.desal.2005.07.008

Yildiz E. Phosphate removal from water by fly ash using crossflow microfiltration. Separation and Purification Technology 2004;35(3):241-252. https://doi.org/10.1016/s1383-5866(03)00145-x

Şahset İ, Yalçın ŞY, Vahdettin T. Optimization of phosphate removal from wastewater by electrocoagulation with aluminum plate electrodes. Sep. Purif. Technol, 2006;52(2):394-401. https://doi.org/10.1016/j.seppur.2006.05.020

Larkin P. Infrared and raman spectroscopy : principles and spectral interpretation, Amsterdam, Elsevier, 25 mai 2011.

Socrates G. Infrared and Raman Characteristic Group Frequencies : Tables and Charts, John Wiley & Sons, 3rd Ed, 12 avril 2004.

Rajumon R, Anand J, Ealias A, Desai D, George G, Saravanakumar M. Adsorption of textile dyes with ultrasonic assistance using green reduced graphene oxide: An in-depth investigation on sonochemical factors. Journal of Environmental Chemical Engineering 2019;7(6):103479. https://doi.org/10.1016/j.jece.2019.103479

Youcef L, Achour S. Elimination Des Phosphates Par Des Procedes Physico-chimiques. Larhyss Journal, 2005;1112-3680(04):129-140

Sandotin Lassina C. Abattement des phosphates des eaux usées par adsorption sur des géomatériaux constitués de Latérite, grès et schistes ardoisiers. Hal open science, 2018 https://hal.univ-lorraine.fr/tel-01751154

Youcef L, Ouakouak A, Boulanouar D, Achour S. Study of the adsorbent power of powdered activated carbon for the removal of phosphates from natural waters. Larhyss Journal, 2014;1112-3680(17):35–46.

Mathé S. Chimie des solutions. Sciences Sup, Dunod, 2018

Azizian S, Eris S, Wilson L. Re-evaluation of the century-old Langmuir isotherm for modeling adsorption phenomena in solution. Chemical Physics 2018;513:99-104. https://doi.org/10.1016/j.chemphys.2018.06.022

Nezampour F, Ghiaci M, Masoomi K. Activated Carbon and Graphitic Carbon Nitride Immobilized on Mesoporous Silica for Adsorption of Nitrobenzene. Journal of Chemical & Engineering Data 2018;63(6):1977-1986. https://doi.org/10.1021/acs.jced.7b01110

Manoukian M, Tavakol H, Fashandi H. Synthesis of highly uniform sulfur-doped carbon sphere using CVD method and its application for cationic dye removal in comparison with undoped product. Journal of Environmental Chemical Engineering 2018;6(6):6904-6915. https://doi.org/10.1016/j.jece.2018.10.026

Yavari S, Mahmodi N, Teymouri P, Shahmoradi B, Maleki A. Cobalt ferrite nanoparticles: Preparation, characterization and anionic dye removal capability. Journal of the Taiwan Institute of Chemical Engineers 2016;59:320-329. https://doi.org/10.1016/j.jtice.2015.08.011

Abdi J, Vossoughi M, Mahmoodi N, Alemzadeh I. Synthesis of metal-organic framework hybrid nanocomposites based on GO and CNT with high adsorption capacity for dye removal. Chemical Engineering Journal 2017;326:1145-1158. https://doi.org/10.1016/j.cej.2017.06.054

Kamaraj R, Pandiarajan A, Vasudevan S, Vasudevan S. Facile one-pot electrosynthesis of zinc hydroxide for the adsorption of hazardous 2-(2-methyl-4-chlorophenoxy) propionic acid (MCPP) from water and its modelling studies. Journal of Environmental Chemical Engineering 2018;6(2):2017-2026. https://doi.org/10.1016/j.jece.2018.03.011

Fu C, Tran H, Chen X, Juang R. Preparation of polyaminated Fe3O4@chitosan core-shell magnetic nanoparticles for efficient adsorption of phosphate in aqueous solutions. Journal of Industrial and Engineering Chemistry 2020;83:235-246. https://doi.org/10.1016/j.jiec.2019.11.033

Konadu-Amoah B, Hu R, Ndé-Tchoupé A, Gwenzi W, Noubactep C. Metallic iron (Fe0)-based materials for aqueous phosphate removal: A critical review. Journal of Environmental Management 2022;315:115157. https://doi.org/10.1016/j.jenvman.2022.115157

Parvizi Ghaleh S, Khodapanah E, Tabatabaei-Nezhad S. Comprehensive monolayer two-parameter isotherm and kinetic studies of thiamine adsorption on clay minerals: Experimental and modeling approaches. Journal of Molecular Liquids 2020;306:112942. https://doi.org/10.1016/j.molliq.2020.112942

Chitrakar R, Tezuka S, Sonoda A, Sakane K, Ooi K, Hirotsu T. Selective adsorption of phosphate from seawater and wastewater by amorphous zirconium hydroxide. Journal of Colloid and Interface Science 2006;297(2):426-433. https://doi.org/10.1016/j.jcis.2005.11.011

Xiao M, Yue H, Feng X, Wang Y, He M, Chen Q, Zhang Z. A double-layered neutral cadmium-organic framework for selective adsorption of cationic organic dyes through electrostatic affinity. Journal of Solid State Chemistry 2020;288:121376. https://doi.org/10.1016/j.jssc.2020.121376

He C, Shi L, Lou S, Liu B, Zhang W, Zhang L. Synthesis of spherical magnetic calcium modified chitosan micro-particles with excellent adsorption performance for anionic-cationic dyes. International Journal of Biological Macromolecules 2019;128:593-602. https://doi.org/10.1016/j.ijbiomac.2019.01.189

Zhou Q, Wang X, Liu J, Zhang L. Phosphorus removal from wastewater using nano-particulates of hydrated ferric oxide doped activated carbon fiber prepared by Sol–Gel method. Chemical Engineering Journal 2012;200-202:619-626. https://doi.org/10.1016/j.cej.2012.06.123

Ouakouak A, Youcef L. Phosphates Removal by Activated Carbon. Sensor Letters 2016;14(6):600-605. https://doi.org/10.1166/sl.2016.3664

Gupta V, Agarwal S, Ahmad R, Mirza A, Mittal J. Sequestration of toxic congo red dye from aqueous solution using ecofriendly guar gum/ activated carbon nanocomposite. International Journal of Biological Macromolecules 2020;158:1310-1318. https://doi.org/10.1016/j.ijbiomac.2020.05.025

Zhang Y, Bai L, Zhou W, Lu R, Gao H, Zhang S. Superior adsorption capacity of Fe3O4@nSiO2@mSiO2 core-shell microspheres for removal of congo red from aqueous solution. Journal of Molecular Liquids 2016;219:88-94. https://doi.org/10.1016/j.molliq.2016.02.096

Downloads

Published

2022-07-14

Issue

Section

Articles