Computational Docking Study of Calanolides as Potential Inhibitors of SARS-CoV-2 Main Protease


  • Abdelkrim Benalia Environment and Health Research Laboratory (LRES), Faculty of Medicine, University of Djillali Liabes, Sidi Bel Abbès, Algeria
  • Hasnia Abdeldjebar Centre de Recherche Scientifique et Technique en Analyses Physico Chimiques, Bou Ismail, Algeria
  • Taqiy Eddine Badji Laboratoire Physico-Chimie des Matériaux Avancés(LPCMA), Faculté des sciences exactes, Sidi Bèl Abbès, Algeria



SARS-CoV-2, 3CLpro, (-) calanolide A, -(-) calanolide B, antivirals


Despite the nationwide effort provided to combat the COVID-19 pandemic, we have yet to approve a specific antiviral treatment against the SARS-CoV-2. We have studied the molecular interactions between two anti-HIV-1 natural drugs, +(-) calanolide A and -(-) calanolide B, and the active site of 3CLpro through a computational docking method. Our promising results show that the two compounds of this study are potential inhibitors of the SARS-CoV-2 3CLpro through strong binding to its catalytic dyad. Considering its progress in clinical trials as an anti-HIV-1 treatment, we suggest that +(-) calanolide A is a good candidate for the treatment of COVID-19.


Liu C. Pay attention to situation of SARS-CoV-2 and TCM advantages in treatment of novel coronavirus infection. Chinese Herbal Medicines 2020;12(2):97-103.

Petrosillo N, Viceconte G, Ergonul O, Ippolito G, Petersen E. COVID-19, SARS and MERS: are they closely related?. Clinical Microbiology and Infection 2020;26(6):729-734.

WHO. Weekly Epidemiological Update, Edition 64, 2 November 2021.

Tian S, Hu N, Lou J, Chen K, Kang X, Xiang Z, Chen H, Wang D, Liu N, Liu D, Chen G, Zhang Y, Li D, Li J, Lian H, Niu S, Zhang L, Zhang J. Characteristics of COVID-19 infection in Beijing. Journal of Infection 2020;80(4):401-406.

Rothan H, Byrareddy S. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. Journal of Autoimmunity 2020;109:102433.

Wu Y, Xu X, Chen Z, Duan J, Hashimoto K, Yang L, Liu C, Yang C. Nervous system involvement after infection with COVID-19 and other coronaviruses. Brain, Behavior, and Immunity 2020;87:18-22.

Lippi G, Plebani M, Henry B. Thrombocytopenia is associated with severe coronavirus disease 2019 (COVID-19) infections: A meta-analysis. Clinica Chimica Acta 2020;506:145-148.

Mousavizadeh L, Ghasemi S. Genotype and phenotype of COVID-19: Their roles in pathogenesis. Journal of Microbiology, Immunology and Infection 2021;54(2):159-163.

Prabakaran P, Xiao X, Dimitrov D. A model of the ACE2 structure and function as a SARS-CoV receptor. Biochemical and Biophysical Research Communications 2004;314(1):235-241.

Anand K, Ziebuhr J, Wadhwani P, Mesters J, Hilgenfeld R. Coronavirus Main Proteinase (3CLpro) Structure: Basis for Design of anti-SARS Drugs. Science 2003;300:1763-1767.

Tahir ul Qamar M, Alqahtani S, Alamri M, Chen L. Structural basis of SARS-CoV-2 3CLpro and anti-COVID-19 drug discovery from medicinal plants. Journal of Pharmaceutical Analysis 2020;10(4):313-319.

Thanigaimalai P, Konno S, Yamamoto T, Koiwai Y, Taguchi A, Takayama K, Yakushiji F, Akaji K, Kiso Y, Kawasaki Y, Chen S, Naser-Tavakolian A, Schön A, Freire E, Hayashi Y. Design, synthesis, and biological evaluation of novel dipeptide-type SARS-CoV 3CL protease inhibitors: Structure–activity relationship study. European Journal of Medicinal Chemistry 2013;65:436-447.

Verma S, Dixit R, Pandey K. Cysteine Proteases: Modes of Activation and Future Prospects as Pharmacological Targets. Frontiers in Pharmacology 2016;7:1-12.

Ramos A, Vela-Pérez M, Ferrández M, Kubik A, Ivorra B. Modeling the impact of SARS-CoV-2 variants and vaccines on the spread of COVID-19. Communications in Nonlinear Science and Numerical Simulation 2021;102:105937.

Auyeung T, Lee J, Lai W, Choi C, Lee H, Lee J, Li P, Lok K, Ng Y, Wong W. The use of corticosteroid as treatment in SARS was associated with adverse outcomes: a retrospective cohort study. Journal of Infection 2005;51(2):98-102.

Zhang W, Zhao Y, Zhang F, Wang Q, Li T, Liu Z, Wang J, Qin Y, Zhang X, Yan X, Zeng X, Zhang S. The use of anti-inflammatory drugs in the treatment of people with severe coronavirus disease 2019 (COVID-19): The Perspectives of clinical immunologists from China. Clinical Immunology 2020;214:108393.

Zhang R, Wang X, Ni L, Di X, Ma B, Niu S, Liu C, Reiter R. COVID-19: Melatonin as a potential adjuvant treatment. Life Sciences 2020;250:117583.

Cortegiani A, Ingoglia G, Ippolito M, Giarratano A, Einav S. A systematic review on the efficacy and safety of chloroquine for the treatment of COVID-19. Journal of Critical Care 2020;57:279-283.

Singh A, Singh A, Shaikh A, Singh R, Misra A. Chloroquine and hydroxychloroquine in the treatment of COVID-19 with or without diabetes: A systematic search and a narrative review with a special reference to India and other developing countries. Diabetes & Metabolic Syndrome: Clinical Research & Reviews 2020;14(3):241-246.

Devaux C, Rolain J, Colson P, Raoult D. New insights on the antiviral effects of chloroquine against coronavirus: what to expect for COVID-19?. International Journal of Antimicrobial Agents 2020;55(5):105938.

Lu H. Drug treatment options for the 2019-new coronavirus (2019-nCoV). BioScience Trends 2020;14(1):69-71.

Sohrabi C, Alsafi Z, O'Neill N, Khan M, Kerwan A, Al-Jabir A, Iosifidis C, Agha R. World Health Organization declares global emergency: A review of the 2019 novel coronavirus (COVID-19). International Journal of Surgery 2020;76:71-76.

Ren J, Zhang A, Wang X. Traditional Chinese medicine for COVID-19 treatment. Pharmacological Research 2020;155:104743.

Xu Z, Kern E, Westbrook L, Allen L, Buckheit R, Tseng C, Jenta T, Flavin M. Plant-Derived and Semi-Synthetic Calanolide Compounds with in Vitro Activity against Both Human Immunodeficiency Virus Type 1 and Human Cytomegalovirus. Antiviral Chemistry and Chemotherapy 2000;11(1):23-29.

Xu Z, Hollingshead M, Borgel S, Elder C, Khilevich A, Flavin M. In vivo anti-HIV activity of (+)-calanolide a in the hollow fiber mouse model. Bioorganic & Medicinal Chemistry Letters 1999;9(2):133-138.

Xue H, Lu X, Zheng P, Liu L, Han C, Hu J, Liu Z, Ma T, Li Y, Wang L, Chen Z, Liu G. Highly Suppressing Wild-Type HIV-1 and Y181C Mutant HIV-1 Strains by 10-Chloromethyl-11-demethyl-12-oxo-calanolide A with Druggable Profile. Journal of Medicinal Chemistry 2010;53(3):1397-1401.

Liu Z, Guo X, Liu G. Modified calanolides incorporated with furan-2-nitro mimics against Mycobacterium tuberculosis. Bioorganic & Medicinal Chemistry Letters 2015;25(6):1297-1300.

Zhang L, Lin D, Sun X, Curth U, Drosten C, Sauerhering L, Becker S, Rox K, Hilgenfeld R. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science 2020;368(6489):409-412.

Chen H, Wei P, Huang C, Tan L, Liu Y, Lai L. Only One Protomer Is Active in the Dimer of SARS 3C-like Proteinase. Journal of Biological Chemistry 2006;281(20):13894-13898.

Cardellina J, Bokesch H, McKee T, Boyd M. Resolution and comparative anti-HIV evaluation of the enantiomers of calanolides A and B. Bioorganic & Medicinal Chemistry Letters 1995;5(9):1011-1014.

Kim S, Thiessen P, Bolton E, Chen J, Fu G, Gindulyte A, Han L, He J, He S, Shoemaker B, Wang J, Yu B, Zhang J, Bryant S. PubChem Substance and Compound databases. Nucleic Acids Research 2015;44(D1):D1202-D1213.

O'Boyle N, Banck M, James C, Morley C, Vandermeersch T, Hutchison G. Open Babel: An open chemical toolbox. Journal of Cheminformatics 2011;3(1):1-14.

Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, et al. gaussian. Inc. Wallingford C.T 2009;121:150-166

Trott O, Olson A. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry 2010;31:455-461.

BIOVIA Dassault Systèmes. (2020) Discovery Studio Visualizer, v17.2.0.16349. San Diego, CA: Dassault Systèmes

Schrödinger L, DeLano W. PyMOL. 2020; Retrieved from

Michael R et al. Calanolide and related anteretroviral compounds, compositions, and uses thereof. United States Patent 5,591,770. 1997 Jan 7.

Frediansyah A, Tiwari R, Sharun K, Dhama K, Harapan H. Antivirals for COVID-19: A critical review. Clinical Epidemiology and Global Health 2021;9:90-98.

Yamamoto N, Matsuyama S, Hoshino T, Yamamoto N. Nelfinavir inhibits replication of severe acute respiratory syndrome coronavirus 2 in vitro. bioRxiv 2020.

Toprakçí M, Yelekçi K. Docking studies on monoamine oxidase-B inhibitors: Estimation of inhibition constants (Ki) of a series of experimentally tested compounds. Bioorganic & Medicinal Chemistry Letters 2005;15(20):4438-4446.

Galinis D, Fuller R, McKee T, Cardellina J, Gulakowski R, McMahon J, Boyd M. Structure−Activity Modifications of the HIV-1 Inhibitors (+)-Calanolide A and (−)-Calanolide B. Journal of Medicinal Chemistry 1996;39(22):4507-4510.

Khan S, Zia K, Ashraf S, Uddin R, Ul-Haq Z. Identification of chymotrypsin-like protease inhibitors of SARS-CoV-2 via integrated computational approach. Journal of Biomolecular Structure and Dynamics 2020;39(7):2607-2616.

Brito M. Pharmacokinetic study with computational tools in the medicinal chemistry course. Brazilian Journal of Pharmaceutical Sciences 2011;47(4):797-805.

Veber D, Johnson S, Cheng H, Smith B, Ward K, Kopple K. Molecular Properties That Influence the Oral Bioavailability of Drug Candidates. Journal of Medicinal Chemistry 2002;45(12):2615-2623.

Tian S, Wang J, Li Y, Li D, Xu L, Hou T. The application of in silico drug-likeness predictions in pharmaceutical research. Advanced Drug Delivery Reviews 2015;86:2-10.

Nahar L, Talukdar A, Nath D, Nath S, Mehan A, Ismail F, Sarker S. Naturally Occurring Calanolides: Occurrence, Biosynthesis, and Pharmacological Properties Including Therapeutic Potential. Molecules 2020;25(21):4983.

Creagh T, Ruckle J, Tolbert D, Giltner J, Eiznhamer D, Dutta B, Flavin M, Xu Z. Safety and Pharmacokinetics of Single Doses of (+)-Calanolide A, a Novel, Naturally Occurring Nonnucleoside Reverse Transcriptase Inhibitor, in Healthy, Human Immunodeficiency Virus-Negative Human Subjects. Antimicrobial Agents and Chemotherapy 2001;45(5):1379-1386.