Identification of Potential Ligands of the Main Protease of Coronavirus SARS-CoV-2 (2019-nCoV) Using Multimodal Generative Neural-Networks

Authors

  • Syeda Rehana Zia Department of Chemistry, University of Karachi, Karachi, Pakistan

DOI:

https://doi.org/10.17721/fujcV10I1P30-47

Keywords:

Coronavirus, COVID-19, SARS-CoV-2, 2019-nCoV, Main protease (Mpro/3CLpro), Neural-networks

Abstract

The recent outbreak of coronavirus disease 2019 (COVID-19) is posing a global threat to human population. The pandemic caused by novel coronavirus (2019-nCoV), also called as severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2); first emerged in Wuhan city, Hubei province of China in December 2019. The rapid human to human transmission has caused the contagion to spread world-wide affecting 244,385,444 (244.4 million) people globally causing 4,961,489 (5 million) fatalities dated by 27 October 2021. At present, 6,697,607,393 (6.7 billion) vaccine doses have been administered dated by 27 October 2021, for the prevention of COVID-19 infections. Even so, this critical and threatening situation of pandemic and due to various variants’ emergence, the pandemic control has become challenging; this calls for gigantic efforts to find new potent drug candidates and effective therapeutic approaches against the virulent respiratory disease of COVID-19. In the respiratory morbidities of COVID-19, the functionally crucial drug target for the antiviral treatment could be the main protease/3-chymotrypsin protease (Mpro/3CLpro) enzyme that is primarily involved in viral maturation and replication. In view of this, in the current study I have designed a library of small molecules against the main protease (Mpro) of coronavirus SARS-CoV-2 (2019-nCoV) by using multimodal generative neural-networks. The scaffold-based molecular docking of the series of compounds at the active site of the protein was performed; binding poses of the molecules were evaluated and protein-ligand interaction studies followed by the binding affinity calculations validated the findings. I have identified a number of small promising lead compounds that could serve as potential inhibitors of the main protease (Mpro) enzyme of coronavirus SARS-CoV-2 (2019-nCoV). This study would serve as a step forward in the development of effective antiviral therapeutic agents against the COVID-19.

References

WHO says Covid-19 is 10 times more deadly than swine flu. https://www.france24.com/en/20200413-who-says-covid-19-is-10-times-more-deadly-than-swine-flu

Coronavirus 10 times more deadly than swine flu, says WHO | The Independent. https://www.independent.co.uk/news/health/coronavirus-deaths-cases-latest-swine-flu-who-a9462896.html

Hassan S, Sheikh F, Jamal S, Ezeh J, Akhtar A. Coronavirus (COVID-19): A Review of Clinical Features, Diagnosis, and Treatment. Cureus 2020;12(3):e7355. https://doi.org/10.7759/cureus.7355

Novel coronavirus: What we know so far. https://www.medicalnewstoday.com/articles/novel-coronavirus-your-questions-answered

Severe acute respiratory syndrome coronavirus 2. Wikipedia. https://en.wikipedia.org/wiki/Severe_acute_respiratory_syndrome_coronavirus_2

Lim Y, Ng Y, Tam J, Liu D. Human Coronaviruses: A Review of Virus–Host Interactions. Diseases 2016;4(4):26. https://doi.org/10.3390/diseases4030026

Fung T, Liu D. Human Coronavirus: Host-Pathogen Interaction. Annual Review of Microbiology 2019;73(1):529-557. https://doi.org/10.1146/annurev-micro-020518-115759

Cui J, Li F, Shi Z. Origin and evolution of pathogenic coronaviruses. Nature Reviews Microbiology 2018;17(3):181-192. https://doi.org/10.1038/s41579-018-0118-9

Singhal T. A Review of Coronavirus Disease-2019 (COVID-19). The Indian Journal of Pediatrics 2020;87(4):281-286. https://doi.org/10.1007/s12098-020-03263-6

Jones B, Grace D, Kock R, Alonso S, Rushton J, Said M, McKeever D, Mutua F, Young J, McDermott J, Pfeiffer D. Zoonosis emergence linked to agricultural intensification and environmental change. Proceedings of the National Academy of Sciences 2013;110(21):8399-8404. https://doi.org/10.1073/pnas.1208059110

Destoumieux-Garzón D, Mavingui P, Boetsch G, Boissier J, Darriet F, Duboz P, Fritsch C, Giraudoux P, Le Roux F, Morand S, Paillard C, Pontier D, Sueur C, Voituron Y. The One Health Concept: 10 Years Old and a Long Road Ahead. Frontiers in Veterinary Science 2018;5. https://doi.org/10.3389/fvets.2018.00014

One Health. https://www.who.int/news-room/q-a-detail/one-health

Ramphul K, Mejias S. Coronavirus Disease: A Review of a New Threat to Public Health. Cureus 2020;12(3):e7276. https://doi.org/10.7759/cureus.7276

Fehr A, Perlman S. Coronaviruses: An Overview of Their Replication and Pathogenesis. Coronaviruses 2015:1-23. https://doi.org/10.1007/978-1-4939-2438-7_1

Wrapp D, Wang N, Corbett K, Goldsmith J, Hsieh C, Abiona O, Graham B, McLellan J. Cryo-EM Structure of the 2019-nCoV Spike in the Prefusion Conformation. bioRxiv Prepr Serv Biol 2020. https://doi.org/10.1101/2020.02.11.944462

Wrapp D, Wang N, Corbett K, Goldsmith J, Hsieh C, Abiona O, Graham B, McLellan J. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 2020;367(6483):1260-1263. https://doi.org/10.1126/science.abb2507

Hao P, Zhong W, Song S, Fan S, Li X. Is SARS-CoV-2 originated from laboratory? A rebuttal to the claim of formation via laboratory recombination. Emerging Microbes & Infections 2020;9(1):545-547. https://doi.org/10.1080/22221751.2020.1738279

Andersen K, Rambaut A, Lipkin W, Holmes E, Garry R. The proximal origin of SARS-CoV-2. Nature Medicine 2020;26(4):450-452. https://doi.org/10.1038/s41591-020-0820-9

Zhang T, Wu Q, Zhang Z. Probable Pangolin Origin of SARS-CoV-2 Associated with the COVID-19 Outbreak. Current Biology 2020;30(8):1578. https://doi.org/10.1016/j.cub.2020.03.063

Coronavirus Disease (COVID-19) Situation Reports. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports

Jin Z, Du X, Xu Y, Deng Y, Liu M, Zhao Y, Zhang B, Li X, Zhang L, Peng C, Duan Y, Yu J, Wang L, Yang K, Liu F, Jiang R, Yang X, You T, Liu X, Yang X, Bai F, Liu H, Liu X, Guddat L, Xu W, Xiao G, Qin C, Shi Z, Jiang H, Rao Z, Yang H. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature 2020;582(7811):289-293. https://doi.org/10.1038/s41586-020-2223-y

Ashour H, Elkhatib W, Rahman M, Elshabrawy H. Insights into the Recent 2019 Novel Coronavirus (SARS-CoV-2) in Light of Past Human Coronavirus Outbreaks. Pathogens 2020;9(3):186. https://doi.org/10.3390/pathogens9030186

Kumar A, Choudhir G, Shukla S, Sharma M, Tyagi P, Bhushan A, Rathore M. Identification of phytochemical inhibitors against main protease of COVID-19 using molecular modeling approaches. Journal of Biomolecular Structure and Dynamics 2020;39(10):3760-3770. https://doi.org/10.1080/07391102.2020.1772112

Banerjee R, Perera L, Tillekeratne L. Potential SARS-CoV-2 main protease inhibitors. Drug Discovery Today 2021;26(3):804-816. https://doi.org/10.1016/j.drudis.2020.12.005

Hofmarcher M, Mayr A, Rumetshofer E, Ruch P, Renz P, Schimunek J, Seidl P, Vall A, Widrich M, Hochreiter S, Klambauer G. Large-Scale Ligand-Based Virtual Screening for SARS-CoV-2 Inhibitors Using Deep Neural Networks. SSRN Electronic Journal 2020. https://doi.org/10.2139/ssrn.3561442

Yassine R, Makrem M, Farhat F. Active Learning and the Potential of Neural Networks Accelerate Molecular Screening for the Design of a New Molecule Effective against SARS-CoV-2. BioMed Research International 2021;2021:1-14. https://doi.org/10.1155/2021/6696012

Jacobs S, Moon T, McLoughlin K, Jones D, Hysom D, Ahn D, Gyllenhaal J, Watson P, Lightstone F, Allen J, Karlin I, Van Essen B. Enabling rapid COVID-19 small molecule drug design through scalable deep learning of generative models. The International Journal of High Performance Computing Applications 2021;35(5):469-482. https://doi.org/10.1177/10943420211010930

Hsieh K, Wang Y, Chen L, Zhao Z, Savitz S, Jiang X, Tang J, Kim Y. Drug repurposing for COVID-19 using graph neural network and harmonizing multiple evidence. Scientific Reports 2021;11(1):1-13. https://doi.org/10.1038/s41598-021-02353-5

FDA Approves First COVID-19 Vaccine | FDA 2021. https://www.fda.gov/news-events/press-announcements/fda-approves-first-covid-19-vaccine

Wang J, Zhang Y, Nie W, Luo Y, Deng L. Computational anti-COVID-19 drug design: progress and challenges. Briefings in Bioinformatics 2021;23(1):bbab484. https://doi.org/10.1093/bib/bbab484

Dolgin E. COVID vaccine immunity is waning — how much does that matter?. Nature 2021;597(7878):606-607. https://doi.org/10.1038/d41586-021-02532-4

Alsharif MH, Alsharif YH, Albreem MA, Jahid A, Solyman AAA, Yahya K, et al. Application of machine intelligence technology in the detection of vaccines and medicines for SARS-CoV-2. Eur Rev Med Pharmacol Sci. 2020;24(22):11977–11981. https://doi.org/10.26355/eurrev_202011_23860

Mollica L, Decherchi S, Zia S, Gaspari R, Cavalli A, Rocchia W. Kinetics of protein-ligand unbinding via smoothed potential molecular dynamics simulations. Scientific Reports 2015;5(1):11539. https://doi.org/10.1038/srep11539

Davenport T, Kalakota R. The potential for artificial intelligence in healthcare. Future Healthcare Journal 2019;6(2):94-98. https://doi.org/10.7861/futurehosp.6-2-94

Singh R, Bhardwaj V, Das P, Purohit R. A computational approach for rational discovery of inhibitors for non-structural protein 1 of SARS-CoV-2. Computers in Biology and Medicine 2021;135:104555. https://doi.org/10.1016/j.compbiomed.2021.104555

Bhardwaj V, Singh R, Sharma J, Rajendran V, Purohit R, Kumar S. Bioactive Molecules of Tea as Potential Inhibitors for RNA-Dependent RNA Polymerase of SARS-CoV-2. Frontiers in Medicine 2021;8:684020. https://doi.org/10.3389/fmed.2021.684020

Zhai T, Zhang F, Haider S, Kraut D, Huang Z. An Integrated Computational and Experimental Approach to Identifying Inhibitors for SARS-CoV-2 3CL Protease. Frontiers in Molecular Biosciences 2021;8:267. https://doi.org/10.3389/fmolb.2021.661424

de Vries M, Mohamed A, Prescott R, Valero-Jimenez A, Desvignes L, O’Connor R, Steppan C, Devlin J, Ivanova E, Herrera A, Schinlever A, Loose P, Ruggles K, Koralov S, Anderson A, Binder J, Dittmann M. A Comparative Analysis of SARS-CoV-2 Antivirals Characterizes 3CL pro Inhibitor PF-00835231 as a Potential New Treatment for COVID-19. Journal of Virology 2021;95(10):e01819–20. https://doi.org/10.1128/jvi.01819-20

Khan A, Ali S, Khan M, Saleem S, Ali A, Suleman M, Babar Z, Shafiq A, Khan M, Wei D. Combined drug repurposing and virtual screening strategies with molecular dynamics simulation identified potent inhibitors for SARS-CoV-2 main protease (3CLpro). Journal of Biomolecular Structure and Dynamics 2020;39(13):4659-4670. https://doi.org/10.1080/07391102.2020.1779128

Khan A, Heng W, Wang Y, Qiu J, Wei X, Peng S, Saleem S, Khan M, Ali S, Wei D. In silico and in vitro evaluation of kaempferol as a potential inhibitor of the SARS‐CoV‐2 main protease (3CLpro). Phytotherapy Research 2021;35(6):2841-2845. https://doi.org/10.1002/ptr.6998

Sharma P, Bansal M, Sethi A, Poonam , Pena L, Goel V, Grishina M, Chaturvedi S, Kumar D, Rathi B. Computational methods directed towards drug repurposing for COVID-19: advantages and limitations. RSC Advances 2021;11(57):36181-36198. https://doi.org/10.1039/d1ra05320e

Muratov E, Amaro R, Andrade C, Brown N, Ekins S, Fourches D, Isayev O, Kozakov D, Medina-Franco J, Merz K, Oprea T, Poroikov V, Schneider G, Todd M, Varnek A, Winkler D, Zakharov A, Cherkasov A, Tropsha A. A critical overview of computational approaches employed for COVID-19 drug discovery. Chemical Society Reviews 2021;50(16):9121-9151. https://doi.org/10.1039/d0cs01065k

Hassanzadeganroudsari M, Ahmadi A, Rashidi N, Hossain M, Habib A, Apostolopoulos V. Computational Chemistry to Repurposing Drugs for the Control of COVID-19. Biologics 2021;1(2):111-128. https://doi.org/10.3390/biologics1020007

Gurung A, Ali M, Lee J, Farah M, Al-Anazi K. An Updated Review of Computer-Aided Drug Design and Its Application to COVID-19. BioMed Research International 2021;2021:1-18. https://doi.org/10.1155/2021/8853056

Singh R, Bhardwaj V, Sharma J, Purohit R, Kumar S. In-silico evaluation of bioactive compounds from tea as potential SARS-CoV-2 nonstructural protein 16 inhibitors. Journal of Traditional and Complementary Medicine 2022;12(1):35-43. https://doi.org/10.1016/j.jtcme.2021.05.005

Sharma J, Kumar Bhardwaj V, Singh R, Rajendran V, Purohit R, Kumar S. An in-silico evaluation of different bioactive molecules of tea for their inhibition potency against non structural protein-15 of SARS-CoV-2. Food Chemistry 2021;346:128933. https://doi.org/10.1016/j.foodchem.2020.128933

Bhardwaj V, Singh R, Das P, Purohit R. Evaluation of acridinedione analogs as potential SARS-CoV-2 main protease inhibitors and their comparison with repurposed anti-viral drugs. Computers in Biology and Medicine 2021;128:104117. https://doi.org/10.1016/j.compbiomed.2020.104117

Bhardwaj V, Singh R, Sharma J, Rajendran V, Purohit R, Kumar S. Identification of bioactive molecules from tea plant as SARS-CoV-2 main protease inhibitors. Journal of Biomolecular Structure and Dynamics 2020;39(10):3449-3458. https://doi.org/10.1080/07391102.2020.1766572

Cully M. A tale of two antiviral targets — and the COVID-19 drugs that bind them. Nature Reviews Drug Discovery 2021;21(1):3-5. https://doi.org/10.1038/d41573-021-00202-8

Macchiagodena M, Pagliai M, Procacci P. Characterization of the non-covalent interaction between the PF-07321332 inhibitor and the SARS-CoV-2 main protease. Journal of Molecular Graphics and Modelling 2022;110:108042. https://doi.org/10.1016/j.jmgm.2021.108042

Owen D, Allerton C, Anderson A, Aschenbrenner L, Avery M, Berritt S, Boras B, Cardin R, Carlo A, Coffman K, Dantonio A, Di L, Eng H, Ferre R, Gajiwala K, Gibson S, Greasley S, Hurst B, Kadar E, Kalgutkar A, Lee J, Lee J, Liu W, Mason S, Noell S, Novak J, Obach R, Ogilvie K, Patel N, Pettersson M, Rai D, Reese M, Sammons M, Sathish J, Singh R, Steppan C, Stewart A, Tuttle J, Updyke L, Verhoest P, Wei L, Yang Q, Zhu Y. An oral SARS-CoV-2 Mpro inhibitor clinical candidate for the treatment of COVID-19. Science 2021;374(6575):1586-1593. https://doi.org/10.1126/science.abl4784

Halford B. How Pfizer scientists transformed an old drug lead into a COVID-19 antiviral. Chemical & Engineering News 2022;100(3):16-18. https://doi.org/10.47287/cen-10003-feature1

Beigel J, Tomashek K, Dodd L, Mehta A, Zingman B, Kalil A, Hohmann E, Chu H, Luetkemeyer A, Kline S, Lopez de Castilla D, Finberg R, Dierberg K, Tapson V, Hsieh L, Patterson T, Paredes R, Sweeney D, Short W, Touloumi G, Lye D, Ohmagari N, Oh M, Ruiz-Palacios G, Benfield T, Fätkenheuer G, Kortepeter M, Atmar R, Creech C, Lundgren J, Babiker A, Pett S, Neaton J, Burgess T, Bonnett T, Green M, Makowski M, Osinusi A, Nayak S, Lane H. Remdesivir for the Treatment of Covid-19 — Final Report. New England Journal of Medicine 2020;383(19):1813-1826. https://doi.org/10.1056/nejmoa2007764

Popova M, Isayev O, Tropsha A. Deep reinforcement learning for de novo drug design. Science Advances 2018;4(7):aap7885. https://doi.org/10.1126/sciadv.aap7885

Santana M, Silva-Jr F. De novo design and bioactivity prediction of SARS-CoV-2 main protease inhibitors using recurrent neural network-based transfer learning. BMC Chemistry 2021;15(1):1-20 https://doi.org/10.1186/s13065-021-00737-2

Jin W, Stokes J, Eastman R, Itkin Z, Zakharov A, Collins J, Jaakkola T, Barzilay R. Deep learning identifies synergistic drug combinations for treating COVID-19. Proceedings of the National Academy of Sciences 2021;118(39):e2105070118. https://doi.org/10.1073/pnas.2105070118

Wang L, Zhang Y, Wang D, Tong X, Liu T, Zhang S, Huang J, Zhang L, Chen L, Fan H, Clarke M. Artificial Intelligence for COVID-19: A Systematic Review. Frontiers in Medicine 2021;8:1457. https://doi.org/10.3389/fmed.2021.704256

Xu Z, Su C, Xiao Y, Wang F. Artificial intelligence for COVID-19: battling the pandemic with computational intelligence. Intelligent Medicine 2022;2(1):13-29. https://doi.org/10.1016/j.imed.2021.09.001

Amilpur S, Bhukya R. Predicting novel drug candidates against Covid-19 using generative deep neural networks. Journal of Molecular Graphics and Modelling 2022;110:108045. https://doi.org/10.1016/j.jmgm.2021.108045

Wang S, Sun Q, Xu Y, Pei J, Lai L. A transferable deep learning approach to fast screen potential antiviral drugs against SARS-CoV-2. Briefings in Bioinformatics 2021;22(6):bbab211. https://doi.org/10.1093/bib/bbab211

Chenthamarakshan V, Das P, Hoffman SC, Strobelt H, Padhi I, Lim KW, et al. CogMol: Target-Specific and Selective Drug Design for COVID-19 Using Deep Generative Models. Adv Neural Inf Process Syst 2020. https://doi.org/10.48550/arXiv.2004.01215

Abdel-Basset M, Hawash H, Elhoseny M, Chakrabortty R, Ryan M. DeepH-DTA: Deep Learning for Predicting Drug-Target Interactions: A Case Study of COVID-19 Drug Repurposing. IEEE Access 2020;8:170433-170451. https://doi.org/10.1109/access.2020.3024238

Skalic M, Sabbadin D, Sattarov B, Sciabola S, De Fabritiis G. From Target to Drug: Generative Modeling for the Multimodal Structure-Based Ligand Design. Molecular Pharmaceutics 2019;16(10):4282-4291. https://doi.org/10.1021/acs.molpharmaceut.9b00634

Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y. Generative adversarial networks. Communications of the ACM 2020;63(11):139-144. https://doi.org/10.1145/3422622

Macchiagodena M, Pagliai M, Procacci P. Identification of potential binders of the main protease 3CLpro of the COVID-19 via structure-based ligand design and molecular modeling. Chemical Physics Letters 2020;750:137489. https://doi.org/10.1016/j.cplett.2020.137489

Jacobs J, Grum-Tokars V, Zhou Y, Turlington M, Saldanha S, Chase P, Eggler A, Dawson E, Baez-Santos Y, Tomar S, Mielech A, Baker S, Lindsley C, Hodder P, Mesecar A, Stauffer S. Discovery, Synthesis, And Structure-Based Optimization of a Series of N-(tert-Butyl)-2-(N-arylamido)-2-(pyridin-3-yl) Acetamides (ML188) as Potent Noncovalent Small Molecule Inhibitors of the Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) 3CL Protease. Journal of Medicinal Chemistry 2013;56(2):534-546. https://doi.org/10.1021/jm301580n

Varela-Rial A, Majewski M, Cuzzolin A, Martínez-Rosell G, De Fabritiis G. SkeleDock: A Web Application for Scaffold Docking in PlayMolecule. Journal of Chemical Information and Modeling 2020;60(6):2673-2677. https://doi.org/10.1021/acs.jcim.0c00143

Jiménez J, Škalič M, Martínez-Rosell G, De Fabritiis G. KDEEP: Protein–Ligand Absolute Binding Affinity Prediction via 3D-Convolutional Neural Networks. Journal of Chemical Information and Modeling 2018;58(2):287-296. https://doi.org/10.1021/acs.jcim.7b00650

PlayMolecule | Acellera. https://www.acellera.com/products/playmolecule

Martínez-Rosell G, Giorgino T, De Fabritiis G. PlayMolecule ProteinPrepare: A Web Application for Protein Preparation for Molecular Dynamics Simulations. Journal of Chemical Information and Modeling 2017;57(7):1511-1516. https://doi.org/10.1021/acs.jcim.7b00190

Olsson M, Søndergaard C, Rostkowski M, Jensen J. PROPKA3: Consistent Treatment of Internal and Surface Residues in Empirical pKa Predictions. Journal of Chemical Theory and Computation 2011;7(2):525-537. https://doi.org/10.1021/ct100578z

Dolinsky T, Czodrowski P, Li H, Nielsen J, Jensen J, Klebe G, Baker N. PDB2PQR: expanding and upgrading automated preparation of biomolecular structures for molecular simulations. Nucleic Acids Research 2007;35(Web Server):W522-W525. https://doi.org/10.1093/nar/gkm276

Pettersen E, Goddard T, Huang C, Couch G, Greenblatt D, Meng E, Ferrin T. UCSF Chimera?A visualization system for exploratory research and analysis. Journal of Computational Chemistry 2004;25(13):1605-1612. https://doi.org/10.1002/jcc.20084

Weininger D. SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. Journal of Chemical Information and Modeling 1988;28(1):31-36. https://doi.org/10.1021/ci00057a005

Ruiz-Carmona S, Alvarez-Garcia D, Foloppe N, Garmendia-Doval A, Juhos S, Schmidtke P, Barril X, Hubbard R, Morley S. rDock: A Fast, Versatile and Open Source Program for Docking Ligands to Proteins and Nucleic Acids. PLoS Computational Biology 2014;10(4):e1003571. https://doi.org/10.1371/journal.pcbi.1003571

PyMOL | pymol.org. Schrödinger L.L.C. (2015) The PyMOL Molecular Graphics System, Version 1.8. https://pymol.org/2

O'Boyle N, Banck M, James C, Morley C, Vandermeersch T, Hutchison G. Open Babel: An open chemical toolbox. Journal of Cheminformatics 2011;3(1):33. https://doi.org/10.1186/1758-2946-3-33

Openbabel | PyPI https://pypi.org/project/openbabel

Humphrey W, Dalke A, Schulten K. VMD: Visual molecular dynamics. Journal of Molecular Graphics 1996;14(1):33-38. https://doi.org/10.1016/0263-7855(96)00018-5

Pires D, Blundell T, Ascher D. pkCSM: Predicting Small-Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures. Journal of Medicinal Chemistry 2015;58(9):4066-4072. https://doi.org/10.1021/acs.jmedchem.5b00104

Convert https://datascience.unm.edu/tomcat/biocomp/convert

Lowe D, Corbett P, Murray-Rust P, Glen R. Chemical Name to Structure: OPSIN, an Open Source Solution. Journal of Chemical Information and Modeling 2011;51(3):739-753. https://doi.org/10.1021/ci100384d

Designed library of congeneric compounds docked against the main protease (Mpro) of coronavirus SARS-CoV-2 (2019-nCoV)

Downloads

Published

2022-07-14

Issue

Section

Articles