Hetarenocoumarins based on 7-hydroxy-3-(benzothiazol-2-yl)coumarin


  • Tetyana Shokol Department of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska Street, 64/13, Kyiv 01601, Ukraine
  • Anastasiya Suprun Department of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska Street, 64/13, Kyiv 01601, Ukraine
  • Viktoriia Moskvina Department of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska Street, 64/13, Kyiv 01601, Ukraine
  • Volodymyr Khilya Department of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska Street, 64/13, Kyiv 01601, Ukraine




7-hydroxy-3-benzothiazolylcoumarin, aminomethylation, formylation, cyclization, hetarenocoumarins


The syntheses of angular hetarenocoumarins, namely chromeno[8,7-e][1,3]oxazin-2-ones and furo[2,3-h]chromen-2-one, have been accomplished starting from 7-hydroxy-3-(benzothiazol-2-yl)-coumarin using aminomethylation and formylation reactions.


Sarker S, Nahar L. Progress in the Chemistry of Naturally Occurring Coumarins. Progress in the Chemistry of Organic Natural Products 2017;106:241-304. https://doi.org/10.1007/978-3-319-59542-9_3

Gouda M, Salem M, Helal M. A Review on Synthesis and Pharmacological Activity of Coumarins and Their Analogs. Current Bioactive Compounds 2020;16(6):818-836. https://doi.org/10.2174/1573407215666190405154406

Chao R, Ding M, Chen J, Lee C, Lin S. Preparation and Characterization of Substituted 3-Benzothiazol-2-Ylcoumarins. Journal of the Chinese Chemical Society 2010;57(2):213-221. https://doi.org/10.1002/jccs.201000033

Jin X, Wu X, Xie P, Liu S, Wu J, Wang T, Zhou H, Leng X, Chen W. Reaction-based fluorescent probes for rapid detection of hydrogen sulfide in vivo. Analytical Methods 2018;10(33):4079-4084. https://doi.org/10.1039/c8ay01176a

Lin W, Long L, Tan W. A highly sensitive fluorescent probe for detection of benzenethiols in environmental samples and living cells. Chem. Commun. 2010;46(9):1503-1505. https://doi.org/10.1039/b922478e

Zhang Q, Ding S, Zhai Q, Feng G. Highly sensitive and selective detection of biothiols by a new low dose colorimetric and fluorescent probe. RSC Advances 2015;5(77):62325-62330. https://doi.org/10.1039/c5ra11841g

Zhang H, Li M, Feng W, Feng G. Rapid and selective detection of selenocysteine with a known readily available colorimetric and fluorescent turn-on probe. Dyes and Pigments 2018;149:475-480. https://doi.org/10.1016/j.dyepig.2017.10.031

Tong K, Zhao J, Tse C, Wan P, Rong J, Au-Yeung H. Selective catecholamine detection in living cells by a copper-mediated oxidative bond cleavage. Chemical Science 2019;10(37):8519-8526. https://doi.org/10.1039/c9sc03338f

Tan W, Leng T, Lai G, Li Z, Wang K, Shen Y, Wang C. A novel coumarin-based fluorescence enhancement and colorimetric probe for Cu2+ via selective hydrolysis reaction. Journal of Photochemistry and Photobiology A: Chemistry 2016;324:81-86. https://doi.org/10.1016/j.jphotochem.2016.03.014

Wang K, Zhao C, Guo S, Lu Y, Shen Y, Wang C. A coumarin-based near-infrared fluorescent probe with a large stokes shift for the sequential recognition of Ni2+ and CN−: Performance research and quantum calculation. Journal of Photochemistry and Photobiology A: Chemistry 2019;382:111943. https://doi.org/10.1016/j.jphotochem.2019.111943

Guo S, Guo Z, Wang C, Shen Y, Zhu W. An ultrasensitive fluorescent probe for hydrazine detection and its application in water samples and living cells. Tetrahedron 2019;75(18):2642-2646. https://doi.org/10.1016/j.tet.2019.03.022

Yu Z, Chung C, Tang F, Brewer T, Au-Yeung H. A modular trigger for the development of selective superoxide probes. Chemical Communications 2017;53(72):10042-10045. https://doi.org/10.1039/c7cc05405j

Wang K, Lai G, Li Z, Liu M, Shen Y, Wang C. A novel colorimetric and fluorescent probe for the highly selective and sensitive detection of palladium based on Pd(0) mediated reaction. Tetrahedron 2015;71(41):7874-7878. https://doi.org/10.1016/j.tet.2015.08.021

Li C, Wang S, Huang Y, Wen Q, Wang L, Kan Y. Photoluminescence properties of a novel cyclometalated iridium(iii) complex with coumarin-boronate and its recognition of hydrogen peroxide. Dalton Transactions 2014;43(14):5595. https://doi.org/10.1039/c3dt53498g

Azim S, Al-Hazmy S, Ebeid E, El-Daly S. A new coumarin laser dye 3-(benzothiazol-2-yl)-7-hydroxycoumarin. Optics & Laser Technology 2005;37(3):245-249. https://doi.org/10.1016/j.optlastec.2004.04.003

Makowska A, Wolf L, Saczewski F, Bednarski PJ, Kornicka A. Synthesis and cytotoxic evaluation of benzoxazole/benzothiazole-2-imino-coumarin hybrids and their coumarin analogues as potential anticancer agents. Pharmazie. 2019; 74: P. 648-657. https://doi.org/10.1691/ph.2019.9664

Wang C, Xu F, Niu Y, Wu Y, Sun J, Peng Y, Liang L, Xu P. Synthesis and Biological Evaluations of 3-Benzothiazol-2-yl Coumarin Derivatives as MEK1 Inhibitors. Letters in Drug Design & Discovery 2013;10(8):727-732. https://doi.org/10.2174/15701808113109990012

Khilya OV., Frasinyuk MS, Turov AV, Khilya VP. Chemistry of 3-hetarylcoumarins. 1. 3-(2-benzazolyl)-coumarins. Chemistry of Heterocyclic Compounds 2001;37(8):1029-1037. https://doi.org/10.1023/a:1012704121345

Syzova Z, Karasyov A, Lukatskaya L, Doroshenko A. Acid-base and spectral properties of 3 (benzothiazolyl-2)cumarins and their imino analogs. Kharkov University Bulletin Chemical Series 2016;26(49):26-37. https://doi.org/10.26565/2220-637x-2016-26-03

Wolfbeis O, Koller E, Hoghmuth P. The Unusually Strong Effect of a 4-Cyano Group upon Electronic Spectra and Dissociation Constants of 3-Substituted 7-Hydroxycoumarin. Bulletin of the Chemical Society of Japan 1985;58(2):731-734. https://doi.org/10.1246/bcsj.58.731

Khoobi M, Ramazani A, Foroumadi A, Hamadi H, Hojjati Z, Shafiee A. Efficient microwave-assisted synthesis of 3-benzothiazolo and 3-benzothiazolino coumarin derivatives catalyzed by heteropoly acids. Journal of the Iranian Chemical Society 2011;8(4):1036-1042. https://doi.org/10.1007/bf03246560

Frasinyuk M, Turov A, Vinogradova V, Khilya V. Aminomethylation of cytisine by 3-hetaryl-7-hydroxycoumarins. Chemistry of Natural Compounds 2007;43(2):176-180. https://doi.org/10.1007/s10600-007-0073-6

Roubinet B, Renard P, Romieu A. New insights into the water-solubilization of thiol-sensitive fluorogenic probes based on long-wavelength 7-hydroxycoumarin scaffolds. Dyes and Pigments 2014;110:270-284. https://doi.org/10.1016/j.dyepig.2014.02.004

Li J, Li X, Jia J, Chen X, Lv Y, Guo Y, Li J. A ratiometric near-infrared fluorescence strategy based on spiropyran in situ switching for tracking dynamic changes of live-cell lysosomal pH. Dyes and Pigments 2019;166:433-442. https://doi.org/10.1016/j.dyepig.2019.03.060

Shokol T, Moskvina V, Glebov E, Khilya V. Neoflavonoid Angelicin Derivatives. Chemistry of Natural Compounds 2019;55(4):716-718. https://doi.org/10.1007/s10600-019-02787-4

Moskvina V, Khilya V. Synthesis of pyrano[2,3-f]chromen-2,8-diones and pyrano[3,2-g]chromen-2,8-diones based on o-hydroxyformyl(acyl)neoflavonoids. Chemistry of Natural Compounds 2008;44(1):16-23. https://doi.org/10.1007/s10600-008-0006-z