Recyclization reactions of 8,10-dibromocamphor with Grignard and organolithium compounds
DOI:
https://doi.org/10.17721/fujcV9I1P97-103Keywords:
camphor, recyclization, Grob fragmentation, intramolecular alkylation, bicyclo[3.2.0]heptaneAbstract
Grignard reagents and organolithium compounds react with 8,10-dibromocamphor to afford substituted 1-methyl-2-methylenebicyclo[3.2.0]heptanes. Recyclization proceeds via intramolecular enolate alkylation and Grob fragmentation of the reaction intermediates. All compounds have been characterized by 1H, 13C and 19F NMR spectroscopy and their chemical composition proved by HRMS analyses. The relative spatial arrangement of substituents in the molecule of (1-methyl-2-methylenebicyclo[3.2.0]heptan-6-yl)diphenylmethanol was studied by NOESY experiments.
References
Clase J, Money T. Enantiospecific Synthesis of a Chiral Intermediate in Steroid Synthesis. Synthesis 1989;1989(12):934-936. https://doi.org/10.1055/s-1989-27434
Clase J, Money T. An enantiospecific route to C,D ring synthons for steroid synthesis. Canadian Journal of Chemistry 1992;70(5):1537-1544. https://doi.org/10.1139/v92-189
Stevens R, Gaeta F, Lawrence D. Camphorae: chiral intermediates for the enantiospecific total synthesis of steroids. 1. Journal of the American Chemical Society 1983;105(26):7713-7719. https://doi.org/10.1021/ja00364a042
Jacobs R, Feutrill G, Meinwald J. Defense mechanisms of arthropods. 84. Synthesis of (-)-.alpha.-necrodol and (-)-.beta.-necrodol: novel cyclopentanoid terpenes from a carrion beetle. The Journal of Organic Chemistry 1990;55(13):4051-4062. https://doi.org/10.1021/jo00300a021
Rowley M, Kishi Y. Synthetic studies on ophiobolins. Tetrahedron Letters 1988;29(39):4909-4912. https://doi.org/10.1016/s0040-4039(00)80638-3
Rowley M, Tsukamoto M, Kishi Y. Total synthesis of (+)-ophiobolin C. Journal of the American Chemical Society 1989;111(7):2735-2737. https://doi.org/10.1021/ja00189a069
Hutchinson J, Money T. A formal enantiospecific synthesis of California red scale pheromone. Canadian Journal of Chemistry 1985;63(11):3182-3185. https://doi.org/10.1139/v85-526
Hutchinson J, Money T, Piper S. Use of camphor in pseudoguaianolide synthesis. Canadian Journal of Chemistry 1986;64(7):1354-1356. https://doi.org/10.1139/v86-232
Williams D, Coleman P, Henry S. Synthesis strategies for marine diterpenes. Total synthesis of the clavularanes. Journal of the American Chemical Society 1993;115(24):11654-11655. https://doi.org/10.1021/ja00077a097
Money T, Richardson S, Wong M. An enantiospecific synthetic approach to the limonoids. Chemical Communications 1996;(5):667-668. https://doi.org/10.1039/cc9960000667
Money T, Wong M. A formal, enantiospecific synthesis of pseudoguaianolides. Tetrahedron 1996;52(18):6307-6324. https://doi.org/10.1016/0040-4020(96)00284-0
Vaillancourt V, Agharahimi M, Sundram U, Richou O, Faulkner D, Albizati K. Synthesis and absolute configuration of the antiparasitic furanosesquiterpenes (-)-furodysin and (-)-furodysinin. Camphor as a six-membered ring chiral pool template. The Journal of Organic Chemistry 1991;56(1):378-387. https://doi.org/10.1021/jo00001a069
Stevens R, Beaulieu N, Chan W, Daniewski A, Takeda T, Waldner A, Williard P, Zutter U. Studies on the synthesis of vitamin B12. 4. Journal of the American Chemical Society 1986;108(5):1039-1049. https://doi.org/10.1021/ja00265a033
Stevens R, Chang J, Lapalme R, Schow S, Schlageter M, Shapiro R, Weller H. Studies on the synthesis of vitamin B-12. 3. Journal of the American Chemical Society 1983;105(26):7719-7729. https://doi.org/10.1021/ja00364a043
Stevens R, Lawrence D. Camphorae: chiral intermediates fob the total synthesis of steroids. Tetrahedron 1985;41(1):93-100. https://doi.org/10.1016/s0040-4020(01)83472-4
Paquette L, Zeng Q, Wang H, Shih T. From Carbohydrates to the Discovery of Pronounced Heteroatomic Effects on Anionically Accelerated [3,3]-Sigmatropic Rearrangements. European Journal of Organic Chemistry 2000;2000(12):2187-2194. https://doi.org/10.1002/1099-0690(200006)2000:12<2187::aid-ejoc2187>3.0.co;2-2
Paquette L, Zhao M. Enantiospecific Total Synthesis of Natural (+)-Taxusin. 1. Retrosynthesis, Advancement to Diastereomerictrans-Δ9,10-Tricyclic Olefinic Intermediates, and the Stereocontrol Attainable Because of Intrinsic Rotational Barriers Therein. Journal of the American Chemical Society 1998;120(21):5203-5212. https://doi.org/10.1021/ja9805371
Paquette L, Zhao M, Montgomery F, Zeng Q, Wang T, Elmore S, Combrink K, Wang H, Bailey S, Su Z. From D-camphor to the taxanes. Highly concise rearrangement-based approaches to taxusin and taxol. Pure and Applied Chemistry 1998;70(8):1449-1457. https://doi.org/10.1351/pac199870081449
Garcı́a Martı́nez A, Teso Vilar E, Garcı́a Fraile A, de la Moya Cerero S, de Oro Osuna S, Lora Maroto B. From natural camphor to (1 R ,2 S )-2-chloromethyl-3-oxocyclopentanecarboxylic acid: a stereocontrolled approach to enantiopure sarkomycin. Tetrahedron Letters 2001;42(44):7795-7799. https://doi.org/10.1016/s0040-4039(01)01663-x
Cody J, Boeckman R. 3.3 Terpene Derived Auxiliaries: Camphor and Pinene Derived Auxiliaries. Comprehensive Chirality 2012;:42-105. https://doi.org/10.1016/b978-0-08-095167-6.00303-7
Sánchez-Obregón R, Fallis A, Szabo A. Syntheses of a potential fluorescence probe, (−)-(R)-7-azatryptophan, via alkylation of the (1R,4R)-camphor imine of tert-butylgycinate. Canadian Journal of Chemistry 1992;70(5):1531-1536. https://doi.org/10.1139/v92-188
Zou H, Hu J, Zhang J, You J, Ma D, Lü D, Xie R. Asymmetric reduction of prochiral ketones with borane using chiral squaric amino alcohols derived from camphor as catalysts. Journal of Molecular Catalysis A: Chemical 2005;242(1-2):57-61. https://doi.org/10.1016/j.molcata.2005.07.020
Verdaguer X, Vázquez J, Fuster G, Bernardes-Génisson V, Greene A, Moyano A, Pericàs M, Riera A. Camphor-Derived, Chelating Auxiliaries for the Highly Diastereoselective Intermolecular Pauson−Khand Reaction: Experimental and Computational Studies. The Journal of Organic Chemistry 1998;63(20):7037-7052. https://doi.org/10.1021/jo9809985
Dalko P, Langlois Y. Stereoselective hetero-Claisen rearrangement of camphor derived oxazoline-N-oxides. Tetrahedron Letters 1998;39(15):2107-2110. https://doi.org/10.1016/s0040-4039(98)00062-8
Lewis F, McCabe T, Grayson D. Preliminary investigations on novel camphor-derived chiral sulfones: completely stereoselective formation of tricyclic β-hydroxy sulfones from 8- and 10-functionalized camphor derivatives. Tetrahedron 2011;67(39):7517-7528. https://doi.org/10.1016/j.tet.2011.07.081
Thomas A, Monk K, Abraham S, Lee S, Garner C. Rearrangement of methylenecamphor during electrophilic bromination: remarkably clean access to the unnatural fenchyl (1,3,3-trimethylbicyclo[2.2.1]heptane) system. Tetrahedron Letters 2001;42(12):2261-2263. https://doi.org/10.1016/s0040-4039(01)00089-2
Knizhnikov V, Voitenko Z, Golovko V, Gorichko M. A route to a wide range of cyclopentanecarboxylic acids via 4-substituted camphors. Tetrahedron 2012;68(7):1972-1978. https://doi.org/10.1016/j.tet.2011.12.053
Ferguson C, Money T, Pontillo J, Whitelaw P, Wong M. A remarkable multiple rearrangement process in the bromination of endo-3-bromo-4-methylcamphor: Intermediates for triterpenoid synthesis. Tetrahedron 1996;52(47):14661-14672. https://doi.org/10.1016/0040-4020(96)00944-1
Dadson W, Hutchinson J, Money T. Formation of synthetically useful camphor derivatives: mechanistic aspects. Canadian Journal of Chemistry 1990;68(10):1821-1828. https://doi.org/10.1139/v90-284
García Martínez A, Moya de la Cerero S, Teso Vilar E, García Fraile A, Díaz Morillo C, Pérez Morillo R. Enantiospecific Synthesis of 9,10-Dihalocamphors. Synlett 2004;(1):134-136. https://doi.org/10.1055/s-2003-43347
Dadson W, Lam M, Money T, Piper S. Synthesis of 8,10- and 9,10-disubstituted camphor derivatives. Canadian Journal of Chemistry 1983;61(2):343-346. https://doi.org/10.1139/v83-061
Downloads
Published
Issue
Section
License
Copyright (c) 2021 French-Ukrainian Journal of Chemistry

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).