Synthesis of linear hetarenochromones based on 7-hydroxy-6-formyl(acetyl)chromones
DOI:
https://doi.org/10.17721/fujcV9I1P70-96Keywords:
6-formyl(acetyl)-7-hydroxychromones, annulation, furo[3, 2-g]chromones, chromeno[6, 7-d]isoxazoles, pyrano[3Abstract
Fused chromones are attracting increasing attention as novel therapeutic agents due to their wide distribution in nature, effective bioactivities and low toxicity. 6-Carbonyl-7-hydroxychromones proved to be versatile synthons for the synthesis of linear hetarenochromones by annulation of heterocycle to the chromone core. The present review is focused on the syntheses of furo[3,2-g]chromones, pyrano[3,2-g]chromones and some of their N-containing analogues, namely chromeno[6,7-d]isoxazoles, pyrano[3’,2’:6,7]chromeno[4,3-b]pyridine-5,11-diones and pyrano[3’,2’:6,7]chromeno[4,3-c]pyridine-5,11-diones based on the 7-hydroxy-6-formylchromones or 7-hydroxy-6-acetylchromones and shows the current state of research to date. The methods for the synthesis of the starting 7-hydroxy-6-formylchromones and 7-hydroxy-6-acetylchromones have been also mentioned. The biological activity of naturally occurring and modified synthetic linear hetarenochromones has been also represented.
References
Sharma S, Kumar S, Chand K, Kathuria A, Gupta A, Jain R. An Update on Natural Occurrence and Biological Activity of Chromones. Current Medicinal Chemistry 2011;18(25):3825-3852. https://doi.org/10.2174/092986711803414359
Keri R, Budagumpi S, Pai R, Balakrishna R. Chromones as a privileged scaffold in drug discovery: A review. European Journal of Medicinal Chemistry 2014;78:340-374. https://doi.org/10.1016/j.ejmech.2014.03.047
Mohsin N, Irfan M, Hassan S, Saleem U. Current Strategies in Development of New Chromone Derivatives with Diversified Pharmacological Activities: A Review. Pharmaceutical Chemistry Journal 2020;54(3):241-257. https://doi.org/10.1007/s11094-020-02187-x
Edwards , Howell . The chromones: history, chemistry and clinical development. A tribute to the work of Dr R. E. C. Altounyan. Clinical & Experimental Allergy 2000;30(6):756-774. https://doi.org/10.1046/j.1365-2222.2000.00879.x
El-Desoky E, Al-Shihry S. Synthesis and reactions of some new benzopyranone derivatives with potential biological activities. Journal of Heterocyclic Chemistry 2008;45(6):1855-1864. https://doi.org/10.1002/jhet.5570450648
Lozinskii O, Shokol T, Khilya V. Synthesis and biological activity of chromones annelated at the C(7)–C(8) bond with heterocycles (review). Chemistry of Heterocyclic Compounds 2011;47(9):1055-1077. https://doi.org/10.1007/s10593-011-0876-z
Shokol T, Lozinski O, Gorbulenko N, Khilya V. The synthesis of angular heteroarenochromones based on 7-hydroxy-8-carbonylchromones. French-Ukrainian Journal of Chemistry 2017;5(2):68-94. https://doi.org/10.17721/fujcv5i2p68-94
Zhu Y, Yan K, Tu G. Two homoisoflavones from Ophiopogon japonicus. Phytochemistry 1987;26(10):2873-2874. https://doi.org/10.1016/s0031-9422(00)83615-8
Zhou C, Zou L, Mo J, Wang X, Yang B, He Q, Gan L. Homoisoflavonoids fromOphiopogon japonicus. Helvetica Chimica Acta 2013;96(7):1397-1405. https://doi.org/10.1002/hlca.201200493
Liu Z, Zheng X, Wang Y, Tang M, Chen S, Zhang F, Li L, Zhang C, Sun Y. Lignans and isoflavonoids from the stems of Pisonia umbellifera. RSC Advances 2018;8(29):16383-16391. https://doi.org/10.1039/c8ra02240b
Schönberg A, Badran N, Starkowsky N. Furo-chromones and -Coumarins. VII. Degradation of Visnagin, Khellin and Related Substances; Experiments with Chromic Acid and Hydrogen Peroxide; and a Synthesis of Eugenitin. Journal of the American Chemical Society 1953;75(20):4992-4995. https://doi.org/10.1021/ja01116a032
Gammill R, Nash S. Catalytic osmylation and oxypalladation of khellin. Two useful methods for furan ring degradation. Replacement of the furan ring by an isoxazole ring.. Tetrahedron Letters 1984;25(28):2953-2956. https://doi.org/10.1016/s0040-4039(01)81335-6
Gammill R, Nash S. Oxymetallation of khellin. Solvomercuration, osmylation, and palladium-catalyzed oxidation of the furan ring in khellin. The synthesis of highly oxygenated chromones and 2-substituted furochromones. The Journal of Organic Chemistry 1986;51(16):3116-3123. https://doi.org/10.1021/jo00366a007
Ragab F, Yahya T, El-Naa M, Arafa R. Design, synthesis and structure–activity relationship of novel semi-synthetic flavonoids as antiproliferative agents. European Journal of Medicinal Chemistry 2014;82:506-520. https://doi.org/10.1016/j.ejmech.2014.06.007
Schönberg A, Badran N, Starkowsky N. Furo-chromones and -Coumarins. XIV. 2-(3'-Pyridyl) Analogs of Khellin and Visnagin. Journal of the American Chemical Society 1955;77(20):5439-5440. https://doi.org/10.1021/ja01625a084
Jayaprakash Rao Y, David Krupadanam GL. A facile synthesis of 7,8/6,7 fused pyrano[4,3-b]pyridinochromones and evaluation of antibacterial activity. Indian J. Chem., Sect. B. 2000;39(8):610–613.
Murti V, Seshadri T, Sundaresan V, Venkataramani B. Formylation of polyhydroxy flavones and chromones. Proceedings of the Indian Academy of Sciences - Section A 1959;50(3):192-195. https://doi.org/10.1007/bf03048852
Mohan SB, Murti VVS. Duff Reaction with Flavones: Formation of Homobiflavones. Indian J. Chem. Sect. B. 1982;21(9):887–888.
Shokol TV, Gorbulenko NV, Khilya VP. Synthesis of 7-Hydroxy-2,8-dimethyl-4-oxo-3-phenoxy-4H-6-chromenecarbaldehide. Bulletin of Taras Shevchenko National University of Kyiv. Chemistry., 2018;(1(55)):54-57.
Shokol T, Gorbulenko N, Frasinyuk M, Khilya V. Synthesis of 7-Hydroxy-8-Methyl-4'-Methoxy-6-Formylisoflavone and Linear Hetarenochromones Based on It. Chemistry of Natural Compounds 2020;56(3):420-422. https://doi.org/10.1007/s10600-020-03052-9
Rodighiero P, Pastorini G, Chilin A, Manzini P, Guiotto A. Synthesis of some methylfurochromones as potential photochemotherapeutic agents. Journal of Heterocyclic Chemistry 1988;25(2):527-533. https://doi.org/10.1002/jhet.5570250232
Dorofeenko G, Tkachenko V. Synthesis of 4-alkoxybenzopyrylium salts and chromones. Chemistry of Heterocyclic Compounds 1972;8(8):935-938. https://doi.org/10.1007/bf00476317
Oganesyan ET, Vasilenko YuK, Khachatryan M.M, Pyshchev AI. Synthesis of flavones with hypolipidemic activity. Pharm. Chem. J. 1990;23(11):927–931. https://doi.org/10.1007/bf00764625
Khalil N, Bishr M, Desouky S, Salama O. Ammi Visnaga L., a Potential Medicinal Plant: A Review. Molecules 2020;25(2):301. https://doi.org/10.3390/molecules25020301
Abu-Hashem A, El-Shazly M. Synthesis, reactions and biological activities of furochromones: A review. European Journal of Medicinal Chemistry 2015;90:633-665. https://doi.org/10.1016/j.ejmech.2014.12.001
Travaini M, Sosa G, Ceccarelli E, Walter H, Cantrell C, Carrillo N, Dayan F, Meepagala K, Duke S. Khellin and Visnagin, Furanochromones fromAmmi visnaga(L.) Lam., as Potential Bioherbicides. Journal of Agricultural and Food Chemistry 2016;64(50):9475-9487. https://doi.org/10.1021/acs.jafc.6b02462
Murti V, Seshadri T. Nuclear oxidation in flavones and related compounds. Proceedings of the Indian Academy of Sciences - Section A 1949;30(3):107-113. https://doi.org/10.1007/bf03049175
Briggs MTD, Duncan GLS, Thornber CW, Cooper CR. The preparation of flavones and their derivatives. Part I. Flavones and 4-thioflavones. J. Chem. Res., Miniprint 1982, 2461−2487.
Hishmat OH, El-Diwani HI, Melek FR, El-Sahrawi HM, El-Shabrawi O. Synthesis and pharmacological activity of benzodipyran derivatives. Indian J. Chem. Sect. B 1996;35(1):30–35.
Duan Y, Jiang Y, Guo F, Chen L, Xu L, Zhang W, Liu B. The antitumor activity of naturally occurring chromones: A review. Fitoterapia 2019;135:114-129. https://doi.org/10.1016/j.fitote.2019.04.012
Alves I, Abreu L, Costa C, Le Hyaric M, Guedes M, Soares M, Bezerra D, Velozo E. Pyranochromones fromDictyoloma vandellianumA.Jussand Their Cytotoxic Evaluation. Chemistry & Biodiversity 2017;14(3):e1600276. https://doi.org/10.1002/cbdv.201600276
Gonzalez A, Darias V, Estevez E, Vivas J. Chemotherapeutic Study of Chromones from Spanish Cneoraceae. Planta Medica 1983;47(01):56-58. https://doi.org/10.1055/s-2007-969950
Moreira W, Lima M, Ferreira A, Ferreira I, Nakamura C. Chemical constituents from the roots of Spathelia excelsa and their antiprotozoal activity. Journal of the Brazilian Chemical Society 2009;20(6):1089–1094. https://doi.org/10.1590/s0103-50532009000600014
Nixon NS, Scheinmann F, Suschitzky JL. Reactions of Allene-1,3-dicarboxylic Esters and Acids/ Part 3. New Chromene, chromone, Quinolone, α-Pyrone and Coumarin Syntheses. J. Chem. Res, Synop. 1984;12:380–381.
Mustafa A, Starkovsky NA, Zaki M. Experiments with Furochromones and -coumarins. Synthesis of α-Pyronochromone Derivatives from Visnagin and α-Pyronocoumarin from Bergapten. The Journal of Organic Chemistry 1961;26(2):523-526. https://doi.org/10.1021/jo01061a057
Hishmat O, El-Ebrashi N, El-Naem S, Abd El Rahman A. Convenient Syntheses of Some Substituted 5H, 11H-Pyrano[3′,2′ : 6,7][1] benzopyrano[3,4-c]pyridines and 7,9-Dioxa-3,4,6-triazabenzo[de]naphthacenes. Synthesis 1982;1982(12):1075-1077. https://doi.org/10.1055/s-1982-30074
Gohar A-KMN, Abdel-Latif FF, El-Ktatny MS. Synthesis of Benzo<1,2-b:5,4-b'>dipyran Derivatives. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem. 1987;26(1-12):274–276.
Hishmat OH, Khalil KHM, Abdel Galil FM, El-Naem ShI, Magd-El-Din AA. Benzodipyrans of expected biological activity. Pharmazie. 1989;44 (11):793–794.
Hishmat O, Khalil K, El-Naem S, el-Rahman A. Synthesis of Pyranobenzopyranopyridines and Benzodipyran Derivatives. Zeitschrift für Naturforschung B 1986;41(2):252-258. https://doi.org/10.1515/znb-1986-0217
Abdel-Aziem A, El-Sawy E, Kirsch G. Convenient synthesis of linear 2H,6H-pyrano[3,2-g] chromenes from natural occurring compound; visnagin. Synthetic Communications 2019;49(24):3419-3425. https://doi.org/10.1080/00397911.2019.1671455
El Bialy S, Gouda M. Cyanoacetamide in heterocyclic chemistry: Synthesis, antitumor and antioxidant activities of some new benzothiophenes. Journal of Heterocyclic Chemistry 2011;48(6):1280-1286. https://doi.org/10.1002/jhet.634
Farag A, Abd-Alrahman S, Ahmed G, Ammar R, Ammar Y, Abbas S. Synthesis of Some Azoles Incorporating a Sulfonamide Moiety as Anticonvulsant Agents. Archiv der Pharmazie 2012;345(9):703-712. https://doi.org/10.1002/ardp.201200014
Gouda M. Synthesis and Antioxidant Activity of a Novel Series of Pyrazolotriazine, Coumarin, Oxoazinone, and Pyrazinopyrimidine Derivatives. Archiv der Pharmazie 2013;346(8):626-634. https://doi.org/10.1002/ardp.201300128
Hishmat OH, Khalil KhMA, El-Naem ShE, Rahman, Abd El-Rahman AH. Synthesis of Some Substituted Pyranobenzopyranopyridines and Benzodipyrans. Indian J. Chem., Sect. B. 1986;25:897–900.
Gohar A-KMN, Abdel-Latif FF. Synthesis of Benzo<1,2-b;5,4-b'>dipyran Derivatives (Part II). Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem. 1987;26(1-12):363–365.
Yakout El-SMA. Preparation of New Chromone Derivatives of Molluscicidal and Antitumour Activities. Egypt. J. Chem. 2002;45(6):1029-1042.
Maigali S, Arief M, EL-Hussieny M, Soliman F. Chemistry of Phosphorus Ylides. Part 34 Synthesis of Chromenone Phosphanylidene and Cyclobutylidene Derivatives. Phosphorus, Sulfur, and Silicon and the Related Elements 2012;187(2):190-204. https://doi.org/10.1080/10426507.2011.600741
Soliman F, Khalil K, Elnaem S. Chemistry of Phosphorus Ylides 9. Reactions with Phosphacumulenes III. Synthesis of Benzodipyrans from the Reaction of Ketenylidene- and Thioketenylidenetriphenylphosphorane with Formylbenzopyran Derivatives. Phosphorus, Sulfur, and Silicon and the Related Elements 1991;60(3-4):183-187. https://doi.org/10.1080/10426509108036780
Atta S, Hafez T, Mahran M. Organophosphorus Chemistry 25. The Utilization of Wittig Reagents in Lactone Ring Formation. Application to the Synthesis of Linear Furocoumarins and pyranocoumarins. Phosphorus, Sulfur, and Silicon and the Related Elements 1993;80(1-4):109-116. https://doi.org/10.1080/10426509308036884
Bodendiek S, Mahieux C, Hänsel W, Wulff H. 4-Phenoxybutoxy-substituted heterocycles – A structure–activity relationship study of blockers of the lymphocyte potassium channel Kv1.3. European Journal of Medicinal Chemistry 2009;44(5):1838-1852. https://doi.org/10.1016/j.ejmech.2008.10.033
Houghton P, Hairong Y. Novel Chromone Alkaloids fromSchumanniophyton magnificum. Planta Medica 1985;51(01):23-27. https://doi.org/10.1055/s-2007-969383
Houghton P, Woldemariam T, Khan A, Burke A, Mahmood N. Antiviral activity of natural and semi-synthetic chromone alkaloids. Antiviral Research 1994;25(3-4):235-244. https://doi.org/10.1016/0166-3542(94)90006-x
Houghton P, Osibogun I, Woldemariam T, Jones K. Heteronuclear NMR Studies of the Chromone Alkaloids and Revision of the Structure of Some Piperidino-Chromone Alkaloids. Planta Medica 1995;61(02):154-157. https://doi.org/10.1055/s-2006-958037
Kelly T, Kim M. Synthesis of schumanniophytine and isoschumanniophytine. The Journal of Organic Chemistry 1992;57(5):1593-1597. https://doi.org/10.1021/jo00031a049
Downloads
Published
Issue
Section
License
Copyright (c) 2021 French-Ukrainian Journal of Chemistry

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).