Physicomechanical Properties of Epoxyurethane Biocomposites Strengthened with Hemp Wood Core

Authors

  • Tetiana Samoilenko Institute of Macromolecular Chemistry of the National Academy of Science of Ukraine, Kharkivske shose, 48, Kyiv 02160, Ukraine http://orcid.org/0000-0002-3232-1621
  • Larysa Yashchenko Institute of Macromolecular Chemistry of the National Academy of Science of Ukraine, Kharkivske shose, 48, Kyiv 02160, Ukraine
  • Natalia Yarova Institute of Macromolecular Chemistry of the National Academy of Science of Ukraine, Kharkivske shose, 48, Kyiv 02160, Ukraine
  • Oleh Babich Institute of Macromolecular Chemistry of the National Academy of Science of Ukraine, Kharkivske shose, 48, Kyiv 02160, Ukraine
  • Oleksandr Brovko Institute of Macromolecular Chemistry of the National Academy of Science of Ukraine, Kharkivske shose, 48, Kyiv 02160, Ukraine

DOI:

https://doi.org/10.17721/fujcV9I1P9-18

Keywords:

polymer biocomposites, epoxyurethanes, epoxydized soybean oil, hemp filler, matrix-filler affinity

Abstract

Hemp wood core (HWC) filled Si-containing epoxyurethane biocomposites, in which diane epoxy resin was replaced with epoxidized soybean oil (ESO), were obtained. It was shown that the tensile strength of ESO-containing polymer was higher, and the flexural strength was lower than those of original polymer. HWC was especially effective strengthening filler for modified epoxyurethanes, because in that case mechanical properties of composites were higher than those of unfilled polymer matrices. Particularly, flexural and tensile strength of unfilled epoxyurethane with maximum content of ESO were 8.1 and 6.8 MPa respectively, while in corresponding composite they reached 17.3 and 15.7 MPa.

References

Begum K, Islam MA. Natural fiber as a substitute to synthetic fiber in polymer composites: a review. Res. J. Engineering Sci. 2013;2(4):46-53. http://www.isca.in/IJES/Archive/v2/i4/10.ISCA-RJEngS-2013-010.pdf

Pickering K, Efendy M, Le T. A review of recent developments in natural fibre composites and their mechanical performance. Composites Part A: Applied Science and Manufacturing 2016;83:98-112. https://doi.org/10.1016/j.compositesa.2015.08.038

Mochane M, Mokhena T, Mokhothu T, Mtibe A, Sadiku E, Ray S, Ibrahim I, Daramola O. Recent progress on natural fiber hybrid composites for advanced applications: A review. Express Polymer Letters 2019;13(2):159-198. https://doi.org/10.3144/expresspolymlett.2019.15

Khan T, Hameed Sultan M, Ariffin A. The challenges of natural fiber in manufacturing, material selection, and technology application: A review. Journal of Reinforced Plastics and Composites 2018;37(11):770-779. https://doi.org/10.1177/0731684418756762

Liu W, Xie T, Qiu R. Improvement of properties for biobased composites from modified soybean oil and hemp fibers: Dual role of diisocyanate. Composites Part A: Applied Science and Manufacturing 2016;90:278-285. https://doi.org/10.1016/j.compositesa.2016.07.018

Athijayamani A, Stalin B, Sidhardhan S, Alavudeen A. Mechanical properties of unidirectional aligned bagasse fibers/vinyl ester composite. Journal of Polymer Engineering 2016;36(2):157-163. https://doi.org/10.1515/polyeng-2014-0325

Mittal V, Saini R, Sinha S. Natural fiber-mediated epoxy composites – A review. Composites Part B: Engineering 2016;99:425-435. https://doi.org/10.1016/j.compositesb.2016.06.051

Stevulova N, Estokova A, Cigasova J, Schwarzova I, Kacik F, Geffert A. Thermal degradation of natural and treated hemp hurds under air and nitrogen atmosphere. Journal of Thermal Analysis and Calorimetry 2016;128(3):1649-1660. https://doi.org/10.1007/s10973-016-6044-z

Bohdanova OF, Dombrovska OP, Babich SS, Dombrovskyi AH. Vyznachennia mozhlyvosti oderzhannia voloknystyskh napivfabrykativ z nenarkotychnykh konopel. Visnyk KhNTU. 2018;64(1):67-74.

Kuzmina TO, Shynkaruk MV, Shamshura MV. Analiz ta shliahy rozvytku produktsiyi iz konoplianoyi syrovyny. Visnyk KhNTU. 2017;60(1):120-124.

Manaia J, Manaia A, Rodriges L. Industrial Hemp Fibers: An Overview. Fibers 2019;7(12):106. https://doi.org/10.3390/fib7120106

Yashchenko LM, Yarova NV, Vorontsova LO, Brovko OO. Physical-mechanical properties of polymer composites reinforced with hemp wood core. Voprosy Khimii i Khimicheskoi Tekhnologii 2020;(5):104-111. https://doi.org/10.32434/0321-4095-2020-132-5-104-111

Panthapulakkal S, Sain M. Studies on the Water Absorption Properties of Short Hemp—Glass Fiber Hybrid Polypropylene Composites. Journal of Composite Materials 2007;41(15):1871-1883. https://doi.org/10.1177/0021998307069900

Ozkur S, Sezgin H, Akay E, Yalcin-Enis I. Hybrid bio-based composites from blends of epoxy and soybean oil resins reinforced with jute woven fabrics. Materials Research Express 2020;7(1):015335. https://doi.org/10.1088/2053-1591/ab6892

Mustapha R, Rahmat A, Abdul Majid R, Mustapha S. Vegetable oil-based epoxy resins and their composites with bio-based hardener: a short review. Polymer-Plastics Technology and Materials 2019;58(12):1311-1326. https://doi.org/10.1080/25740881.2018.1563119

Yashchenko LM, Yarova NV, Vorontsova LO, Babich OV, Brovko OO, Horbatenko OM. Fizyko-khimichni ta mekhanichni kharakterystyky epoksyuretanovykh kompozytiv. Ukrainskyi khimichnyi zhurnal. 2020; 86(8):134-143.

Yashchenko LM, Yarova NV, Samoilenko TF, Brovko OO. Synthesis of epoxy-urethane polymer matrix for biocomposite materials. Voprosy Khimii i Khimicheskoi Tekhnologii 2019;(1):73-79. https://doi.org/10.32434/0321-4095-2019-122-1-73-79

Prydatko AB. Orhanosylikatni polimerni sumishi na osnovi ridkykh stekol ta izotsianativ. Dys. kand. khim. nauk: K.; 1998, pp.79-95.

Zhang J, Hu S, Zhan G, Tang X, Yu Y. Biobased nanocomposites from clay modified blend of epoxidized soybean oil and cyanate ester resin. Progress in Organic Coatings 2013;76(11):1683-1690. https://doi.org/10.1016/j.porgcoat.2013.07.017

Miyagawa H, Mohanty A, Burgueño R, Drzal L, Misra M. Novel biobased resins from blends of functionalized soybean oil and unsaturated polyester resin. Journal of Polymer Science Part B: Polymer Physics 2007;45(6):698-704. https://doi.org/10.1002/polb.21059

Hong C, Wool R. Development of a bio-based composite material from soybean oil and keratin fibers. Journal of Applied Polymer Science 2005;95(6):1524-1538. https://doi.org/10.1002/app.21044

Chen T, Wu Y, Qiu J, Fei M, Qiu R, Liu W. Interfacial compatibilization via in-situ polymerization of epoxidized soybean oil for bamboo fibers reinforced poly(lactic acid) biocomposites. Composites Part A: Applied Science and Manufacturing 2020;138:106066. https://doi.org/10.1016/j.compositesa.2020.106066

Fernandes F, Kirwan K, Wilson P, Coles S. Sustainable Alternative Composites Using Waste Vegetable Oil Based Resins. Journal of Polymers and the Environment 2019;27(11):2464-2477. https://doi.org/10.1007/s10924-019-01534-8

Dittenber D, GangaRao H. Critical review of recent publications on use of natural composites in infrastructure. Composites Part A: Applied Science and Manufacturing 2012;43(8):1419-1429. https://doi.org/10.1016/j.compositesa.2011.11.019

Stalder A, Kulik G, Sage D, Barbieri L, Hoffmann P. A snake-based approach to accurate determination of both contact points and contact angles. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2006;286(1-3):92-103. https://doi.org/10.1016/j.colsurfa.2006.03.008

Yuzova VA, Semenova OV, Harshalin PA. Matierialy i componienty eliektronnykh sriedstv. SPb.: PROSPEKT; 2015, pp.11-29.

Lipatov YuS. Fiziko-khimicheskiye osnovy napolnieniya polimerov. M.: KHIMIYA; 1991, pp.11-230.

Lipatov Y. Adhesion at the polymer blend-solid interface. Composite Interfaces 2000;8(2):151-165. https://doi.org/10.1163/156855400750387808

Ugriumov SA. Soviershenstvovaniye tiekhnologii proizvodstva kompozitsionnykh matierialov na osnovie drieviesnykh napolnitielei i kostry lna. Dissiertatsiya na soiskaniye uchionoi stiepieni doktora tiekhnichieskikh nauk. Kostroma; 2009, pp.129-173.

Downloads

Published

2021-07-01

Issue

Section

Articles