Synthesis of 2-(1,2,4-oxadiazol-5-yl)-2,3-dihydro-4H-chromen-4-ones

Andrii Kysil, Angelina Biitseva, Oleksandra Bugera, Tetyana Yegorova, Zoia Voitenko

Abstract

Simple and efficient synthesis of 2-(1,2,4-oxadiazol-5-yl)-2,3-dihydro-4H-chromen-4-ones is elaborated. The method relies on CDI-mediated cyclocondensation of substituted 4-oxochromane-2-carboxylic acids and amidoximes. The protocol allows the preparation of 2-oxadiazolylchromanones decorated with two pharmacophores (2,3-dihydro-4H-chromen-4-one and 1,2,4-oxadiazole) that are in high demand in drug discovery.

Keywords

flavanone; 2-heteroaryl-4-chromanones; 1,2,4-oxadiazole; fluorine; 1,1'-carbonyldiimidazole (CDI)

Full Text:

PDF

References

Keri R, Budagumpi S, Pai R, Balakrishna R. Chromones as a privileged scaffold in drug discovery: A review. European Journal of Medicinal Chemistry 2014;78:340-374. https://doi.org/10.1016/j.ejmech.2014.03.047

Gaspar A, Matos M, Garrido J, Uriarte E, Borges F. Chromone: A Valid Scaffold in Medicinal Chemistry. Chemical Reviews 2014;114(9):4960-4992. https://doi.org/10.1021/cr400265z

Pivovarenko V, Bugera O, Humbert N, Klymchenko A, Mély Y. A Toolbox of Chromones and Quinolones for Measuring a Wide Range of ATP Concentrations. Chemistry - A European Journal 2017;23(49):11927-11934. https://doi.org/10.1002/chem.201702484

Bojtár M, Janzsó-Berend P, Mester D, Hessz D, Kállay M, Kubinyi M, Bitter I. An uracil-linked hydroxyflavone probe for the recognition of ATP. Beilstein Journal of Organic Chemistry 2018;14:747-755. https://doi.org/10.3762/bjoc.14.63

Matsui J, Molander G. Direct α-Arylation/Heteroarylation of 2-Trifluoroboratochromanones via Photoredox/Nickel Dual Catalysis. Organic Letters 2017;19(3):436-439. https://doi.org/10.1021/acs.orglett.6b03448

Emami S, Ghanbarimasir Z. Recent advances of chroman-4-one derivatives: Synthetic approaches and bioactivities. European Journal of Medicinal Chemistry 2015;93:539-563. https://doi.org/10.1016/j.ejmech.2015.02.048

Leonard E, Yan Y, Lim K, Koffas M. Investigation of Two Distinct Flavone Synthases for Plant-Specific Flavone Biosynthesis in Saccharomyces cerevisiae. Applied and Environmental Microbiology 2005;71(12):8241-8248. https://doi.org/10.1128/aem.71.12.8241-8248.2005

Murti Y, Mishra P. Synthesis and evaluation of flavanones as anticancer agents. Indian J. Pharm. Sci 2014;76(2):163-166.

K. Naik K, Thangavel S, Alam A. Cytotoxicity and Anti-inflammatory Activity of Flavonoid Derivatives Targeting NF-kappaB. Recent Patents on Inflammation & Allergy Drug Discovery 2017;10(2):119-132. https://doi.org/10.2174/1872213x10666161114231625

Patel A, Panchal I, Parmar I, Mishtry B. Synthesis of new flavanoid and chalcone derivatives as antimicrobial agent by green chemistry approach. Int. J. Pharm. Sci Res. 2017;8(6):2725-2730.

Yang G, Jiang X, Ding Y, Yang H. Development of Pesticides Based on Phytoalexins.: Part 1: Design and Synthesis of Flavanone Analogues via Bioisosterism Substitution. Chinese Journal of Chemistry 2010;19(4):423-428. https://doi.org/10.1002/cjoc.20010190419

Yang G, Jiang X, Yang H. Development of novel pesticides based on phytoalexins: Part 2. Quantitative structure-activity relationships of 2-heteroaryl-4-chromanone derivatives. Pest Management Science 2002;58(10):1063-1067. https://doi.org/10.1002/ps.584

Wei D, Yang G, Wan J, Zhan C. Binding Model Construction of Antifungal 2-Aryl-4-chromanones Using CoMFA, CoMSIA, and QSAR Analyses. Journal of Agricultural and Food Chemistry 2005;53(5):1604-1611. https://doi.org/10.1021/jf048313r

Ginex T, Muñoz-Muriedas J, Herrero E, Gibert E, Cozzini P, Luque F. Development and validation of hydrophobic molecular fields derived from the quantum mechanical IEF/PCM-MST solvation models in 3D-QSAR. Journal of Computational Chemistry 2016;37(13):1147-1162. https://doi.org/10.1002/jcc.24305

Ze-Qi Xu , Buckheit R, Stup T, Flavin M, Khilevich A, Rizzo J, Lin L, Zembower D. In vitro anti-human immunodeficiency virus (HIV) activity of the chromanone derivative, 12-oxocalanolide A, a novel NNRTI. Bioorganic & Medicinal Chemistry Letters 1998;8(16):2179-2184. https://doi.org/10.1016/s0960-894x(98)00380-1

Muller B, Litberg T, Yocum R, Pniewski C, Adler M. Extended Aromatic and Heteroaromatic Ring Systems in the Chalcone–Flavanone Molecular Switch Scaffold. The Journal of Organic Chemistry 2016;81(13):5775-5781. https://doi.org/10.1021/acs.joc.6b00986

DeRatt L, Pappoppula M, Aponick A. A Facile Enantioselective Alkynylation of Chromones. Angewandte Chemie International Edition 2019;58(25):8416-8420. https://doi.org/10.1002/anie.201902405

Biernacki K, Daśko M, Ciupak O, Kubiński K, Rachon J, Demkowicz S. Novel 1,2,4-Oxadiazole Derivatives in Drug Discovery. Pharmaceuticals 2020;13(6):111. https://doi.org/10.3390/ph13060111

Kurono M, Kondo Y, Yamaguchi T, Miura K, Usui T, Terada N, Asano K, Mizuno K, Matsubara A, Kato N, Sawai K., inventors; Sanwa Kagaku Kenkyyusho Co., Ltd., Aichi, Japan, assignee. Process for preparing optically active hydantoins. US5001240. 1990 Apr 12.

Brunet S, Desbordes P, Dufour J, Görtz A, Gourgues M, Hilt E, Kuhn B, Naud S, Rebstock AS, Vernay A, Villalba FM, Ducerf S., inventors; BAYER Aktiengesellschaft, Germany, BAYER Cropscience Aktiengesellschaft, Germany, assignee. Hydroxyisoxazolines and derivatives thereof. WO2019122393. 2019. Jun 27.

Ferrari S, Morandi F, Motiejunas D, Nerini E, Henrich S, Luciani R, Venturelli A, Lazzari S, Calò S, Gupta S, Hannaert V, Michels P, Wade R, Costi M. Virtual Screening Identification of Nonfolate Compounds, Including a CNS Drug, as Antiparasitic Agents Inhibiting Pteridine Reductase. Journal of Medicinal Chemistry 2011;54(1):211-221. https://doi.org/10.1021/jm1010572

Mujica-Fernaud T, Buchholz H, Carola C, Rautenberg W, Sirrenberg C, inventors; Merck Patent GmbH, assignee. 2-Oxadiazolchromonderivate. EP1426372A1. 2004 Jun 9.

Purser S, Moore P, Swallow S, Gouverneur V. Fluorine in medicinal chemistry. Chem. Soc. Rev. 2008;37(2):320-330. https://doi.org/10.1039/b610213c