Synthesis and transformation of 6-aminomethyl derivatives of 7-hydroxy-2'-fluoroisoflavones

Authors

  • Olexandr Makarenko National University of Food Technologies
  • Svitlana Bondarenko National University of Food Technologies
  • Galyna Mrug V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, NAS of Ukraine
  • Mykhaylo Frasinyuk V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, NAS of Ukraine http://orcid.org/0000-0003-3133-601X

DOI:

https://doi.org/10.17721/fujcV8I2P203-213

Keywords:

Mannich bases, isoflavones, Michael addition, ortho-quinone methides, alkylations

Abstract

Mannich aminomethylation of 8-methyl-7-hydroxy-2'-fluoroisoflavones applying bis-(N,N-dimethylamino)methane afforded C-6 substituted N,N-dimethylaminomethyl derivatives. Subsequent acetylation of these compounds in acetic anhydride in the presence of potassium acetate provided access to the corresponding acetoxymethyl derivatives that were converted to hydroxymethyl- and alkoxymethyl-substituted 7-hydroxyisoflavonoids. Addition of 3-(N,N-dimethylamino)-5,5-dimethyl-2-cyclohexen-1-one or 1,3-dimethyl-5-aminopyrazole with thermally generated ortho-quinone methides led to hetero-Diels–Alder or Michael adducts.

References

Wang J, Sánchez-Roselló M, Aceña J, del Pozo C, Sorochinsky A, Fustero S, Soloshonok V, Liu H. Fluorine in Pharmaceutical Industry: Fluorine-Containing Drugs Introduced to the Market in the Last Decade (2001–2011). Chemical Reviews 2013;114(4):2432-2506. https://doi.org/10.1021/cr4002879

Bade R, Chan H, Reynisson J. Characteristics of known drug space. Natural products, their derivatives and synthetic drugs. European Journal of Medicinal Chemistry 2010;45(12):5646-5652. https://doi.org/10.1016/j.ejmech.2010.09.018

Gaspar A, Matos M, Garrido J, Uriarte E, Borges F. Chromone: A Valid Scaffold in Medicinal Chemistry. Chemical Reviews 2014;114(9):4960-4992. https://doi.org/10.1021/cr400265z

Amato E, Bankemper T, Kidney R, Do T, Onate A, Thowfeik F, Merino E, Paula S, Ma L. Investigation of fluorinated and bifunctionalized 3-phenylchroman-4-one (isoflavanone) aromatase inhibitors. Bioorganic & Medicinal Chemistry 2014;22(1):126-134. https://doi.org/10.1016/j.bmc.2013.11.045

Bois F, Desfougères A, Boumendjel A, Mariotte A, Bessard G, Caron F, Devillier P. GENISTEIN AND FLUORINATED ANALOGS SUPPRESS AGONIST-INDUCED AIRWAY SMOOTH MUSCLE CONTRACTION. Bioorganic & Medicinal Chemistry Letters 1997;7(10):1323-1326. https://doi.org/10.1016/s0960-894x(97)00215-1

Xie F, Zhao H, Zhao L, Lou L, Hu Y. Synthesis and biological evaluation of novel 2,4,5-substituted pyrimidine derivatives for anticancer activity. Bioorganic & Medicinal Chemistry Letters 2009;19(1):275-278. https://doi.org/10.1016/j.bmcl.2008.09.067

Vasselin D, Westwell A, Matthews C, Bradshaw T, Stevens M. Structural Studies on Bioactive Compounds. 40.1Synthesis and Biological Properties of Fluoro-, Methoxyl-, and Amino-Substituted 3-Phenyl-4H-1-benzopyran-4-ones and a Comparison of Their Antitumor Activities with the Activities of Related 2-Phenylbenzothiazoles. Journal of Medicinal Chemistry 2006;49(13):3973-3981. https://doi.org/10.1021/jm060359j

Hyup Joo Y, Kwan Kim J, Kang S, Noh M, Ha J, Kyu Choi J, Min Lim K, Hoon Lee C, Chung S. 2,3-Diarylbenzopyran derivatives as a novel class of selective cyclooxygenase-2 inhibitors. Bioorganic & Medicinal Chemistry Letters 2003;13(3):413-417. https://doi.org/10.1016/s0960-894x(02)00952-6

Matin A, Gavande N, Kim M, Yang N, Salam N, Hanrahan J, Roubin R, Hibbs D. 7-Hydroxy-benzopyran-4-one Derivatives: A Novel Pharmacophore of Peroxisome Proliferator-Activated Receptor α and -γ (PPARα and γ) Dual Agonists. Journal of Medicinal Chemistry 2009;52(21):6835-6850. https://doi.org/10.1021/jm900964r

Gargala G, Baishanbo A, Favennec L, François A, Ballet J, Rossignol J. Inhibitory Activities of Epidermal Growth Factor Receptor Tyrosine Kinase-Targeted Dihydroxyisoflavone and Trihydroxydeoxybenzoin Derivatives on Sarcocystis neurona, Neospora caninum, and Cryptosporidium parvum Development. Antimicrobial Agents and Chemotherapy 2005;49(11):4628-4634. https://doi.org/10.1128/aac.49.11.4628-4634.2005

Bondarenko S, Frasinyuk M, Khilya V. Features of the aminomethylation of 7-hydroxy-4′-fluoroisoflavones with primary amines. Chemistry of Heterocyclic Compounds 2010;46(2):146-150. https://doi.org/10.1007/s10593-010-0485-2

Mrug G, Frasinyuk M. Advances in chemistry of chromone aminomethyl derivatives. French-Ukrainian Journal of Chemistry 2015;3(2):21-39. https://doi.org/10.17721/fujcv3i2p21-39

Frasinyuk M, Mrug G, Bondarenko S, Sviripa V, Zhang W, Cai X, Fiandalo M, Mohler J, Liu C, Watt D. Application of Mannich bases to the synthesis of hydroxymethylated isoflavonoids as potential antineoplastic agents. Organic & Biomolecular Chemistry 2015;13(46):11292-11301. https://doi.org/10.1039/c5ob01828e

Sepúlveda-Boza S, Walizei G, Rezende M, Vásquez Y, Mascayano C, Mejías L. THE PREPARATION OF NEW ISOFLAVONES. Synthetic Communications 2001;31(12):1933-1940. https://doi.org/10.1081/scc-100104346

Wähälä K, Hase T. Expedient synthesis of polyhydroxyisoflavones. J. Chem. Soc., Perkin Trans. 1 1991;(12):3005-3008. https://doi.org/10.1039/p19910003005

Frasinyuk M, Mrug G, Bondarenko S, Khilya V, Sviripa V, Syrotchuk O, Zhang W, Cai X, Fiandalo M, Mohler J, Liu C, Watt D. Antineoplastic Isoflavonoids Derived from Intermediateortho-Quinone Methides Generated from Mannich Bases. ChemMedChem 2016;11(6):600-611. https://doi.org/10.1002/cmdc.201600008

Barta P, Fülöp F, Szatmári I. Mannich base-connected syntheses mediated by ortho-quinone methides. Beilstein Journal of Organic Chemistry 2018;14:560-575. https://doi.org/10.3762/bjoc.14.43

Kowalski C, Fields K. Enone mesylates. Precursors to .beta.-substituted cyclohexenones. The Journal of Organic Chemistry 1981;46(1):197-201. https://doi.org/10.1021/jo00314a051

Downloads

Additional Files

Published

2020-12-22

Issue

Section

Articles