Adsorption of arsenic and phosphate from groundwater onto a calcined laterite as fixed bed in column experiments
DOI:
https://doi.org/10.17721/fujcV8I2P227-243Keywords:
adsorption, arsenic, laterite soil, groundwater, phosphateAbstract
This work was focused on laterite soil as adsorbent for the removal of arsenic and phosphate from groundwater using column experiments. Results revealed a decrease of arsenic removal efficiency from 100 to 79% with flow rate increasing. Maximum removal of 100% for arsenic and 85% for phosphates was obtained for pH values between 3.5 and 6. The increase of initial arsenic concentration and phosphate amount caused an increase of arsenic adsorption up to 24 µg/g while 58.5 µg/g for phosphate. NaOH solution could desorb 86.8% of arsenic and the reuse of regenerated laterite indicated its efficiency in same experimental conditions.References
Sanou Y. Traitement des eaux avec des charbons actifs, GFH et latérite. Editions Universitaires Européennes, tvisrasco, (2019): 26p.
National Research Council NRC. Arsenic in drinking water. National Academy Press, Washington, DC, ISBN 0-309-06333-7, (1999): 330 p. https://doi.org/10.17226/6444
Borano T, Boonchai W, Chatpet Y. ADSORPTIVE BEHAVIOR OF LOW-COST MODIFIED NATURAL CLAY ADSORBENTS FOR ARSENATE REMOVAL FROM WATER. International Journal of GEOMATE 2017, 12 (33) : 2531 1-7. https://doi.org/10.21660/2017.33.2531
Juan Francisco RZ. Développement d’un procédé d’élimination de l’arsenic en milieu aqueux, associant électro catalyse et filtration. Thèse unique, Université de Grenoble, France, 2012, 127p.
Bretzler A, Lalanne F, Nikiema J, Podgorski J, Pfenninger N, Berg M, Schirmer M. Groundwater arsenic contamination in Burkina Faso, West Africa: Predicting and verifying regions at risk. Science of The Total Environment 2017;584-585:958-970. https://doi.org/10.1016/j.scitotenv.2017.01.147
Ahalem B. Etude expérimentale et modélisation de l'élimination des cations métalliques de l'acide phosphorique issu du procédé humide : Application aux cas de l'aluminium, le fer et le cuivre. Thèse Unique, Université de Constantine, Algérie, 2005, 96p.
Sandotin LC. Abattement des phosphates des eaux usées par adsorption sur des géomatériaux constitués de Latérite, grès et schistes ardoisiers. Thèse unique en Cotutelle, Université de Lorraine (France) et Université Nangui Abrogoua (Côte d’Ivoire), 2014, 118-175.
Youngran J, FAN M, Van Leeuwen J, Belczyk J. Effect of competing solutes on arsenic(V) adsorption using iron and aluminum oxides. Journal of Environmental Sciences 2007;19(8):910-919. https://doi.org/10.1016/s1001-0742(07)60151-x
Klapper H. Control of Eutrophication in Inland Water. Ellis Horwood limited: Chichester, West Sussex, England, 1991, 337p.
Zhou Q, Gibson C, Zhu Y. Evaluation of phosphorus bioavailability in sediments of three contrasting lakes in China and the UK. Chemosphere 2001;42(2):221-225. https://doi.org/10.1016/s0045-6535(00)00129-6
Sparks DL. Environmental Soil Chemistry. Elsevier Science, 2nd Ed. Elsevier-Academic Press, New York, 2003, 1-352.
Lindegren M, Persson P. Competitive adsorption between phosphate and carboxylic acids: quantitative effects and molecular mechanisms. European Journal of Soil Science 2009;60(6):982-993. https://doi.org/10.1111/j.1365-2389.2009.01171.x
Henke K, Hutchison A. Arsenic chemistry in Arsenic Environmental Chemistry, Health Threats and Waste Treatment. Edition John Wiley & Sons, Chichester, pp. 9–68. https://doi.org/10.1002/9780470741122.ch2
Youcef L, Ouakouak A, Boulanouar D, Achour S. Etude du pouvoir adsorbant du charbon actif en poudre pour l’élimination des phosphates des eaux naturelles. Larhyss J. 2014, 17 :35-46.
Guy B. Phosphore, azote et prolifération des végétaux aquatiques. Courrier de l’environnement de l’INRA. 2003, n°48 (511)- 74203 : 13-26.
MAITI A, DASGUPTA S, BASU J, DE S. Adsorption of arsenite using natural laterite as adsorbent. Separation and Purification Technology 2007;55(3):350-359. https://doi.org/10.1016/j.seppur.2007.01.003
Nguyen THN. Using Laterite Materials to Remove Phosphate in Water. Inter. J. Eng. Res. Technol. 2017, 6 (07): 561-567.
Giorgis I, Bonetto S, Giustetto R, Lawane A, Pantet A, Rossetti P, Thomassin J, Vinai R. The lateritic profile of Balkouin, Burkina Faso: Geochemistry, mineralogy and genesis. Journal of African Earth Sciences 2014;90:31-48. https://doi.org/10.1016/j.jafrearsci.2013.11.006
Sanou Y, Balougoun CK, Tiendrebeogo R, Kabore R, Tchakala I, Pare S. Physico-chemical and spectroscopic properties of two laterite soils for applications in arsenic water treatment. Inter. J. Multidiscip. Res. Dev. 2020, 7 (5): 12-17.
Sanou Y, Pare S. Arsenic pollution through drinking groundwater in Burkina Faso: Research of a cheap removal technology. In: Water perspectives in emerging countries: linking water security to sustainable development goals, M. Nolasco, E. Carissimi, E. Urquieta-Gonzalez (Eds.), Cuvillier Verlag Göttingen, Germany, 2018, 137-148.
Sanou Y, Pare S, Phuong T, Nguyen T, Phuoc V. Nguyen Experimental and Kinetic modeling of As (V) adsorption on Granular Ferric Hydroxide and Laterite. J. Environ. Treat. Tech. 2016, 4 (3) : 62-70.
De Jong SJ, Kikietta A. Une particularité bien localisée, heureusement présence d'arsenic en concentration toxique dans un village près de Mogtédo (Haute-Volta). Bulletin de Liaison du Comité Interafricain d'Etudes Hydrauliques. 1981, 44p.
Rice EW, Baird RB, Eaton AD, Clesceri LS. Standard methods for the examination of water and wastewater. American Public Health Association APHA, AWWA, WEF. 22th Edition, Washington DC, 2012, 2001- 3710.
World Health Organization, WHO. Guidelines for Drinking Water Quality. 4th Edition, WHO Press, Geneva, Switzerland, 2011, 569p.
Driehaus W, Jekel M, Hildebrandt U. Granular ferric hydroxide—a new adsorbent for the removal of arsenic from natural water. Journal of Water Supply: Research and Technology—AQUA 1998;47(1):30-35. https://doi.org/10.2166/aqua.1998.0005
Gupta A, Sankararamakrishnan N. Column studies on the evaluation of novel spacer granules for the removal of arsenite and arsenate from contaminated water. Bioresource Technology 2010;101(7):2173-2179. https://doi.org/10.1016/j.biortech.2009.11.027
Mähler J, Persson I. Rapid adsorption of arsenic from aqueous solution by ferrihydrite-coated sand and granular ferric hydroxide. Applied Geochemistry 2013;37:179-189. https://doi.org/10.1016/j.apgeochem.2013.07.025
Ouvrard S. Couplage matériau / procédé d'adsorption pour l'élimination sélective d'arsenic présent en traces dans les eaux. Thèse de doctorat unique, Institut National Polytechnique de Lorraine, France, 2001, 1-222.
Guo X, Chen F. Removal of Arsenic by Bead Cellulose Loaded with Iron Oxyhydroxide from Groundwater. Environmental Science & Technology 2005;39(17):6808-6818. https://doi.org/10.1021/es048080k
Lenoble V. Elimination de l'Arsenic pour la production d'eau potable: oxydation chimique et adsorption sur des substrats solides innovants. Thèse unique, Université de Limoges, France, 2003, 165p.
Maiti A, Basu J, De S. Experimental and kinetic modeling of As(V) and As(III) adsorption on treated laterite using synthetic and contaminated groundwater: Effects of phosphate, silicate and carbonate ions. Chemical Engineering Journal 2012;191:1-12. https://doi.org/10.1016/j.cej.2010.01.031
Luengo C, Brigante M, Antelo J, Avena M. Kinetics of phosphate adsorption on goethite: Comparing batch adsorption and ATR-IR measurements. Journal of Colloid and Interface Science 2006;300(2):511-518. https://doi.org/10.1016/j.jcis.2006.04.015
STRAUSS R, BRÜMMER G, BARROW N. Effects of crystallinity of goethite: II. Rates of sorption and desorption of phosphate. European Journal of Soil Science 1997;48(1):101-114. https://doi.org/10.1111/j.1365-2389.1997.tb00189.x
Sanou Y, Phuong N, Pare S, Phuoc N. Arsenic(v) removal from aqueous solutions using ferromagnetic activated carbon: equilibrium and kinetic studies. Revue des sciences de l'eau 2019;32(2):179. https://doi.org/10.7202/1065206ar
Basu T, Nandi D, Sen P, Ghosh U. Equilibrium modeling of As(III,V) sorption in the absence/presence of some groundwater occurring ions by iron(III)–cerium(IV) oxide nanoparticle agglomerates: A mechanistic approach of surface interaction. Chemical Engineering Journal 2013;228:665-678. https://doi.org/10.1016/j.cej.2013.05.037
Luengo C, Brigante M, Avena M. Adsorption kinetics of phosphate and arsenate on goethite. A comparative study. Journal of Colloid and Interface Science 2007;311(2):354-360. https://doi.org/10.1016/j.jcis.2007.03.027
Nguyen P, Yacouba S, Pare S, Bui H. Removal of Arsenic from Groundwater Using
Lamdong Laterite as a Natural Adsorbent. Polish Journal of Environmental Studies 2020;29(2):1305-1314. https://doi.org/10.15244/pjoes/103028
Maji S, Pal A, Pal T. Arsenic removal from real-life groundwater by adsorption on laterite soil. Journal of Hazardous Materials 2008;151(2-3):811-820. https://doi.org/10.1016/j.jhazmat.2007.06.060
Krishna M, kumar R. Preparation of Amino-Modified Iron Oxide Nano Adsorbent and Calcinated Laterite for Chromium (Vi) and Copper (Ii) Removal. International Journal of Biotech Trends and Technology 2018;8(2):18-20. https://doi.org/10.14445/22490183/ijbtt-v8i2p604
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).