Adsorption of arsenic and phosphate from groundwater onto a calcined laterite as fixed bed in column experiments

Yacouba Sanou, Raymond Kabore, Samuel Pare

Abstract

This work was focused on laterite soil as adsorbent for the removal of arsenic and phosphate from groundwater using column experiments. Results revealed a decrease of arsenic removal efficiency from 100 to 79% with flow rate increasing. Maximum removal of 100% for arsenic and 85% for phosphates was obtained for pH values between 3.5 and 6. The increase of initial arsenic concentration and phosphate amount caused an increase of arsenic adsorption up to 24 µg/g while 58.5 µg/g for phosphate. NaOH solution could desorb 86.8% of arsenic and the reuse of regenerated laterite indicated its efficiency in same experimental conditions.

Keywords

adsorption; arsenic; laterite soil; groundwater; phosphate

Full Text:

PDF

References

Sanou Y. Traitement des eaux avec des charbons actifs, GFH et latérite. Editions Universitaires Européennes, tvisrasco, (2019): 26p.

National Research Council NRC. Arsenic in drinking water. National Academy Press, Washington, DC, ISBN 0-309-06333-7, (1999): 330 p. https://doi.org/10.17226/6444

Borano T, Boonchai W, Chatpet Y. ADSORPTIVE BEHAVIOR OF LOW-COST MODIFIED NATURAL CLAY ADSORBENTS FOR ARSENATE REMOVAL FROM WATER. International Journal of GEOMATE 2017, 12 (33) : 2531 1-7. https://doi.org/10.21660/2017.33.2531

Juan Francisco RZ. Développement d’un procédé d’élimination de l’arsenic en milieu aqueux, associant électro catalyse et filtration. Thèse unique, Université de Grenoble, France, 2012, 127p.

Bretzler A, Lalanne F, Nikiema J, Podgorski J, Pfenninger N, Berg M, Schirmer M. Groundwater arsenic contamination in Burkina Faso, West Africa: Predicting and verifying regions at risk. Science of The Total Environment 2017;584-585:958-970. https://doi.org/10.1016/j.scitotenv.2017.01.147

Ahalem B. Etude expérimentale et modélisation de l'élimination des cations métalliques de l'acide phosphorique issu du procédé humide : Application aux cas de l'aluminium, le fer et le cuivre. Thèse Unique, Université de Constantine, Algérie, 2005, 96p.

Sandotin LC. Abattement des phosphates des eaux usées par adsorption sur des géomatériaux constitués de Latérite, grès et schistes ardoisiers. Thèse unique en Cotutelle, Université de Lorraine (France) et Université Nangui Abrogoua (Côte d’Ivoire), 2014, 118-175.

Youngran J, FAN M, Van Leeuwen J, Belczyk J. Effect of competing solutes on arsenic(V) adsorption using iron and aluminum oxides. Journal of Environmental Sciences 2007;19(8):910-919. https://doi.org/10.1016/s1001-0742(07)60151-x

Klapper H. Control of Eutrophication in Inland Water. Ellis Horwood limited: Chichester, West Sussex, England, 1991, 337p.

Zhou Q, Gibson C, Zhu Y. Evaluation of phosphorus bioavailability in sediments of three contrasting lakes in China and the UK. Chemosphere 2001;42(2):221-225. https://doi.org/10.1016/s0045-6535(00)00129-6

Sparks DL. Environmental Soil Chemistry. Elsevier Science, 2nd Ed. Elsevier-Academic Press, New York, 2003, 1-352.

Lindegren M, Persson P. Competitive adsorption between phosphate and carboxylic acids: quantitative effects and molecular mechanisms. European Journal of Soil Science 2009;60(6):982-993. https://doi.org/10.1111/j.1365-2389.2009.01171.x

Henke K, Hutchison A. Arsenic chemistry in Arsenic Environmental Chemistry, Health Threats and Waste Treatment. Edition John Wiley & Sons, Chichester, pp. 9–68. https://doi.org/10.1002/9780470741122.ch2

Youcef L, Ouakouak A, Boulanouar D, Achour S. Etude du pouvoir adsorbant du charbon actif en poudre pour l’élimination des phosphates des eaux naturelles. Larhyss J. 2014, 17 :35-46.

Guy B. Phosphore, azote et prolifération des végétaux aquatiques. Courrier de l’environnement de l’INRA. 2003, n°48 (511)- 74203 : 13-26.

MAITI A, DASGUPTA S, BASU J, DE S. Adsorption of arsenite using natural laterite as adsorbent. Separation and Purification Technology 2007;55(3):350-359. https://doi.org/10.1016/j.seppur.2007.01.003

Nguyen THN. Using Laterite Materials to Remove Phosphate in Water. Inter. J. Eng. Res. Technol. 2017, 6 (07): 561-567.

Giorgis I, Bonetto S, Giustetto R, Lawane A, Pantet A, Rossetti P, Thomassin J, Vinai R. The lateritic profile of Balkouin, Burkina Faso: Geochemistry, mineralogy and genesis. Journal of African Earth Sciences 2014;90:31-48. https://doi.org/10.1016/j.jafrearsci.2013.11.006

Sanou Y, Balougoun CK, Tiendrebeogo R, Kabore R, Tchakala I, Pare S. Physico-chemical and spectroscopic properties of two laterite soils for applications in arsenic water treatment. Inter. J. Multidiscip. Res. Dev. 2020, 7 (5): 12-17.

Sanou Y, Pare S. Arsenic pollution through drinking groundwater in Burkina Faso: Research of a cheap removal technology. In: Water perspectives in emerging countries: linking water security to sustainable development goals, M. Nolasco, E. Carissimi, E. Urquieta-Gonzalez (Eds.), Cuvillier Verlag Göttingen, Germany, 2018, 137-148.

Sanou Y, Pare S, Phuong T, Nguyen T, Phuoc V. Nguyen Experimental and Kinetic modeling of As (V) adsorption on Granular Ferric Hydroxide and Laterite. J. Environ. Treat. Tech. 2016, 4 (3) : 62-70.

De Jong SJ, Kikietta A. Une particularité bien localisée, heureusement présence d'arsenic en concentration toxique dans un village près de Mogtédo (Haute-Volta). Bulletin de Liaison du Comité Interafricain d'Etudes Hydrauliques. 1981, 44p.

Rice EW, Baird RB, Eaton AD, Clesceri LS. Standard methods for the examination of water and wastewater. American Public Health Association APHA, AWWA, WEF. 22th Edition, Washington DC, 2012, 2001- 3710.

World Health Organization, WHO. Guidelines for Drinking Water Quality. 4th Edition, WHO Press, Geneva, Switzerland, 2011, 569p.

Driehaus W, Jekel M, Hildebrandt U. Granular ferric hydroxide—a new adsorbent for the removal of arsenic from natural water. Journal of Water Supply: Research and Technology—AQUA 1998;47(1):30-35. https://doi.org/10.2166/aqua.1998.0005

Gupta A, Sankararamakrishnan N. Column studies on the evaluation of novel spacer granules for the removal of arsenite and arsenate from contaminated water. Bioresource Technology 2010;101(7):2173-2179. https://doi.org/10.1016/j.biortech.2009.11.027

Mähler J, Persson I. Rapid adsorption of arsenic from aqueous solution by ferrihydrite-coated sand and granular ferric hydroxide. Applied Geochemistry 2013;37:179-189. https://doi.org/10.1016/j.apgeochem.2013.07.025

Ouvrard S. Couplage matériau / procédé d'adsorption pour l'élimination sélective d'arsenic présent en traces dans les eaux. Thèse de doctorat unique, Institut National Polytechnique de Lorraine, France, 2001, 1-222.

Guo X, Chen F. Removal of Arsenic by Bead Cellulose Loaded with Iron Oxyhydroxide from Groundwater. Environmental Science & Technology 2005;39(17):6808-6818. https://doi.org/10.1021/es048080k

Lenoble V. Elimination de l'Arsenic pour la production d'eau potable: oxydation chimique et adsorption sur des substrats solides innovants. Thèse unique, Université de Limoges, France, 2003, 165p.

Maiti A, Basu J, De S. Experimental and kinetic modeling of As(V) and As(III) adsorption on treated laterite using synthetic and contaminated groundwater: Effects of phosphate, silicate and carbonate ions. Chemical Engineering Journal 2012;191:1-12. https://doi.org/10.1016/j.cej.2010.01.031

Luengo C, Brigante M, Antelo J, Avena M. Kinetics of phosphate adsorption on goethite: Comparing batch adsorption and ATR-IR measurements. Journal of Colloid and Interface Science 2006;300(2):511-518. https://doi.org/10.1016/j.jcis.2006.04.015

STRAUSS R, BRÜMMER G, BARROW N. Effects of crystallinity of goethite: II. Rates of sorption and desorption of phosphate. European Journal of Soil Science 1997;48(1):101-114. https://doi.org/10.1111/j.1365-2389.1997.tb00189.x

Sanou Y, Phuong N, Pare S, Phuoc N. Arsenic(v) removal from aqueous solutions using ferromagnetic activated carbon: equilibrium and kinetic studies. Revue des sciences de l'eau 2019;32(2):179. https://doi.org/10.7202/1065206ar

Basu T, Nandi D, Sen P, Ghosh U. Equilibrium modeling of As(III,V) sorption in the absence/presence of some groundwater occurring ions by iron(III)–cerium(IV) oxide nanoparticle agglomerates: A mechanistic approach of surface interaction. Chemical Engineering Journal 2013;228:665-678. https://doi.org/10.1016/j.cej.2013.05.037

Luengo C, Brigante M, Avena M. Adsorption kinetics of phosphate and arsenate on goethite. A comparative study. Journal of Colloid and Interface Science 2007;311(2):354-360. https://doi.org/10.1016/j.jcis.2007.03.027

Nguyen P, Yacouba S, Pare S, Bui H. Removal of Arsenic from Groundwater Using

Lamdong Laterite as a Natural Adsorbent. Polish Journal of Environmental Studies 2020;29(2):1305-1314. https://doi.org/10.15244/pjoes/103028

Maji S, Pal A, Pal T. Arsenic removal from real-life groundwater by adsorption on laterite soil. Journal of Hazardous Materials 2008;151(2-3):811-820. https://doi.org/10.1016/j.jhazmat.2007.06.060

Krishna M, kumar R. Preparation of Amino-Modified Iron Oxide Nano Adsorbent and Calcinated Laterite for Chromium (Vi) and Copper (Ii) Removal. International Journal of Biotech Trends and Technology 2018;8(2):18-20. https://doi.org/10.14445/22490183/ijbtt-v8i2p604