Method for Calculating the Feed Water Replenishment Parameters under Electrolysis Process in Electrolyzer

Authors

DOI:

https://doi.org/10.17721/fujcV8I2P168-175

Keywords:

water electrolysis, electrolyte, alkali concentration, electrical conductivity

Abstract

The article proposes a method for calculating parameters of feed water replenishment in an alkaline electrolyzer, taking into account the given alkali concentrations and the actual electrolyte consumption. The analysis of the electrolyte specific electrical conductivity under electrolysis process is carried out. Recommendations are given for increasing the water electrolysis process efficiency by reducing energy consumption when ensuring the optimal specific electrical electrolyte conductivity at a variable alkali concentration. One of the possible algorithms is presented for calculating electrolyzer parameters to ensure its specified operational characteristics under process of hydrogen and oxygen generation.

Author Biography

Mykola Zipunnikov, A.M. Pidhorny Institute of Mechanical Engineering Problems of NASU

Отдел водородной энергетики, старший научный сотрудник

References

Schmidt O, Gambhir A, Staffell I, Hawkes A, Nelson J, Few S. Future cost and performance of water electrolysis: An expert elicitation study. International Journal of Hydrogen Energy 2017;42(52):30470-30492. https://doi.org/10.1016/j.ijhydene.2017.10.045

Sapountzi F, Gracia J, Weststrate C, Fredriksson H, Niemantsverdriet J. Electrocatalysts for the generation of hydrogen, oxygen and synthesis gas. Progress in Energy and Combustion Science 2017;58:1-35. https://doi.org/10.1016/j.pecs.2016.09.001

Yang F, Kim M, Brown M, Wiley B. Alkaline Water Electrolysis at 25 A cm−2 with a Microfibrous Flow‐through Electrode. Advanced Energy Materials 2020;10(25):2001174. https://doi.org/10.1002/aenm.202001174

Miller H, Bouzek K, Hnat J, Loos S, Bernäcker C, Weißgärber T, Röntzsch L, Meier-Haack J. Green hydrogen from anion exchange membrane water electrolysis: a review of recent developments in critical materials and operating conditions. Sustainable Energy & Fuels 2020;4(5):2114-2133. https://doi.org/10.1039/c9se01240k

Park Y, Yang J, Lee J, Jang M, Jeong J, Choi W, Kim Y, Yin Y, Seo M, Chen Z, Choi S. Superior performance of anion exchange membrane water electrolyzer: Ensemble of producing oxygen vacancies and controlling mass transfer resistance. Applied Catalysis B: Environmental 2020;278:119276. https://doi.org/10.1016/j.apcatb.2020.119276

Rozzi E, Minuto F, Lanzini A, Leone P. Green Synthetic Fuels: Renewable Routes for the Conversion of Non-Fossil Feedstocks into Gaseous Fuels and Their End Uses. Energies 2020;13(2):420. https://doi.org/10.3390/en13020420

Ronda‐Lloret M, Rothenberg G, Shiju N. A Critical Look at Direct Catalytic Hydrogenation of Carbon Dioxide to Olefins. ChemSusChem 2019;12(17):3896-3914. https://doi.org/10.1002/cssc.201900915

Abbasi R, Setzler B, Lin S, Wang J, Zhao Y, Xu H, Pivovar B, Tian B, Chen X, Wu G, Yan Y. A Roadmap to Low‐Cost Hydrogen with Hydroxide Exchange Membrane Electrolyzers. Advanced Materials 2019;31(31):1805876. https://doi.org/10.1002/adma.201805876

Valente A, Iribarren D, Dufour J. End of life of fuel cells and hydrogen products: From technologies to strategies. International Journal of Hydrogen Energy 2019;44(38):20965-20977. https://doi.org/10.1016/j.ijhydene.2019.01.110

Colli A, Girault H, Battistel A. Non-Precious Electrodes for Practical Alkaline Water Electrolysis. Materials 2019;12(8):1336. https://doi.org/10.3390/ma12081336

Liu Z, Sajjad S, Gao Y, Yang H, Kaczur J, Masel R. The effect of membrane on an alkaline water electrolyzer. International Journal of Hydrogen Energy 2017;42(50):29661-29665. https://doi.org/10.1016/j.ijhydene.2017.10.050

Yakimenko LM, Modylevskaya ID, Tkachik ZA. Electrolysis of water. Moscow: Khimiya, 1970. 264 p. (in Russian).

Hamburg DYu, Dubovkin NF. Hydrogen. Properties, receipt, storage, transportation, application. - M.: Chemistry, 1989. 672 p.

Solovey V, Khiem N, Zipunnikov M, Shevchenko A. Improvement of the Membrane - less Electrolysis Technology for Hydrogen and Oxygen Generation. French-Ukrainian Journal of Chemistry 2018;6(2):73-79. https://doi.org/10.17721/fujcv6i2p73-79

Solovei V, Kotenko A, Vorobiova I, Shevchenko A, Zipunnikov. Basic Operation Principles and Control Algorithm for a High-pressure Membrane-less Electrolyser. Journal of Mechanical Engineering 2018;21(4):57-63. https://doi.org/10.15407/pmach2018.04.057

GILLIAM R, GRAYDON J, KIRK D, THORPE S. A review of specific conductivities of potassium hydroxide solutions for various concentrations and temperatures. International Journal of Hydrogen Energy 2007;32(3):359-364. https://doi.org/10.1016/j.ijhydene.2006.10.062

Le Bideau D, Mandin P, Benbouzid M, Kim M, Sellier M. Review of necessary thermophysical properties and their sensivities with temperature and electrolyte mass fractions for alkaline water electrolysis multiphysics modelling. International Journal of Hydrogen Energy 2019;44(10):4553-4569. https://doi.org/10.1016/j.ijhydene.2018.12.222

Downloads

Published

2020-12-22

Issue

Section

Articles