Spectroscopic Studies on the Interaction Between Novel Antiviral Drug Favipiravir and Serum Albumins


  • Alla Yegorova
  • Yulia Scrypynets
  • Georgy Maltsev
  • Inna Leonenko
  • Valery Antonovich
  • Sergey Kashutskуy
  • Olga Voitiuk




favipiravir, serum albumin, protein-ligand interaction, fluorescence quenching, fluorescence resonance energy transfer, thermodynamic parameters


Under physiological conditions, in vitro interaction between favipiravir (FAV) and serum albumins (BSA/HSA) was investigated at excitation wavelength 280 nm and at different temperatures (298 K, 313 K) by fluorescence emission spectroscopy. The hydrogen bond, van der Waals forces and electrostatic interaction plays a major role in stabilizing the complex; the binding constants KA at different temperatures were calculated. The distance r between donor (BSA/HSA) and acceptor (FAV) was obtained according to fluorescence resonance energy transfer (1.55/1.90 nm for BSA/HSA-FAV systems). The effect of FAV on the conformation of BSA/HSA was analyzed using synchronous fluorescence spectroscopy and UV/vis absorption spectroscopy.


WHO. Novel coronavirus – Thailand (ex-China). Geneva: World Health Organization, Jan 14, 2020. https://www.who.int/csr/don/14-january-2020-novel-coronavirus-thailand/en/ (accessed Jan 23, 2020)

Furuta Y, Gowen B, Takahashi K, Shiraki K, Smee D, Barnard D. Favipiravir (T-705), a novel viral RNA polymerase inhibitor. Antiviral Research 2013;100(2):446-454. https://doi.org/10.1016/j.antiviral.2013.09.015

Shiraki K, Daikoku T. Favipiravir, an anti-influenza drug against life-threatening RNA virus infections. Pharmacology & Therapeutics 2020;209:107512. https://doi.org/10.1016/j.pharmthera.2020.107512

Ghuman J, Zunszain P, Petitpas I, Bhattacharya A, Otagiri M, Curry S. Structural Basis of the Drug-binding Specificity of Human Serum Albumin. Journal of Molecular Biology 2005;353(1):38-52. https://doi.org/10.1016/j.jmb.2005.07.075

Gentili P, Ortica F, Favaro G. Static and Dynamic Interaction of a Naturally Occurring Photochromic Molecule with Bovine Serum Albumin Studied by UV−Visible Absorption and Fluorescence Spectroscopy. The Journal of Physical Chemistry B 2008;112(51):16793-16801. https://doi.org/10.1021/jp805922g

Peters T. All about Albumin: Biochemistry, Genetics, and Medical Applications. Academic Press: San Diego, CA, USA; 1996.

Roy S. Review on interaction of serum albumin with drug molecules research and reviews. J. Pharmacol. Toxicol. Stud. 2016;4:7 - 16.

Samari F, Shamsipur M, Hemmateenejad B, Khayamian T, Gharaghani S. Investigation of the interaction between amodiaquine and human serum albumin by fluorescence spectroscopy and molecular modeling. European Journal of Medicinal Chemistry 2012;54:255-263. https://doi.org/10.1016/j.ejmech.2012.05.007

Shi J, Zhou K, Lou Y, Pan D. Multi-spectroscopic and molecular modeling approaches to elucidate the binding interaction between bovine serum albumin and darunavir, a HIV protease inhibitor. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2018;188:362-371. https://doi.org/10.1016/j.saa.2017.07.040

Guo X, Hao A, Han X, Kang P, Jiang Y, Zhang X. The investigation of the interaction between ribavirin and bovine serum albumin by spectroscopic methods. Molecular Biology Reports 2010;38(6):4185-4192. https://doi.org/10.1007/s11033-010-0539-7

Wang B, Zhou K, Lou Y, Pan D, Kou S, Lin Z, Shi J. Assessment on the binding affinity between ritonavir with model transport protein: a combined multi-spectroscopic approaches with computer simulation. Journal of Biomolecular Structure and Dynamics 2019;38(3):744-755. https://doi.org/10.1080/07391102.2019.1587515

Yang H, Huang Y, Wu D, Yan J, He J, Li H. In vitro investigation of the interaction between the hepatitis C virus drug sofosbuvir and human serum albumin through 1H NMR, molecular docking, and spectroscopic analyses. New Journal of Chemistry 2016;40(3):2530-2540. https://doi.org/10.1039/c5nj02003d

Fedosenko AA, Yegorova AV, Maltsev GV, Skrypynets YuV, Antonovich VP. Fluorescent study of the interaction of sofosbuvir with human serum albumin. Abstracts of the X All-Ukrainian Scientific Conference of Students and graduate students. "Chemical Karazin readings - 2018" Kharkiv; 2018. p. 81-82.

Nafisi S, Vishkaee T. Study on the interaction of tamiflu and oseltamivir carboxylate with human serum albumin. Journal of Photochemistry and Photobiology B: Biology 2011;105(1):34-39. https://doi.org/10.1016/j.jphotobiol.2011.06.008

Xiong X, Gan R, Suo Z, Tang P, Zhang S, Zhu Y, Sun Q, Li H. Interactions between the antiviral drug telaprevir and human serum albumin: a combined study with spectroscopic methods and molecular modeling. New Journal of Chemistry 2018;42(12):9791-9800. https://doi.org/10.1039/c8nj00655e

Shahabadi N, Hadidi S, Feizi F. Study on the interaction of antiviral drug ‘Tenofovir’ with human serum albumin by spectral and molecular modeling methods. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2015;138:169-175. https://doi.org/10.1016/j.saa.2014.10.070

Yegorova A, Leonenko I, Scrypynets Y, Maltsev G, Antonovich V. Study on the interaction of 6-(2-morpholin-4-yl-ethyl)-6H-indolo [2,3-b]quinoxaline hydrochloride with human serum albumin by fluorescence spectroscopy. Methods and Applications in Fluorescence 2016;4(3):034012. https://doi.org/10.1088/2050-6120/4/3/034012

Pîrnău A, Mic M, Neamţu S, Floare C, Bogdan M. Calorimetric and spectroscopic studies of the interaction between zidovudine and human serum albumin. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2018;191:226-232. https://doi.org/10.1016/j.saa.2017.10.032

Mote US, Kolekar G. Investigations on interaction between atazanvir sulphate and bovine serum albumin by fluorescence spectroscopy. Indian J. Chem. Section A. 2016; 55:820-823.

Yegorova A, Leonenko I, Scrypynets Y, Maltsev G, Antonovich V, Kashutskyy S. Spectroscopic Studies on the Interaction between Tilorone and Human Serum Albumin. French-Ukrainian Journal of Chemistry 2017;5(1):48-59. https://doi.org/10.17721/fujcv5i1p48-59

Yegorova A, Maltsev G, Scrypynets Y, Kashutskуy S, Antonovich V. SPECTROSCOPIC STUDY OF INTERACTION OF SODIUM DOLUTEGRAVIR WITH HUMAN SERUM ALBUMIN. Odesa National University Herald. Chemistry 2017;22(4(64)):15-28. https://doi.org/10.18524/2304-0947.2017.4(64).115917

Yegorova A, Maltsev G, Scrypynets Y, Antonovich V. SPECTROSCOPIC STUDY OF INTERACTION OF INDOMETHACIN AND DACLATASVIR DIGIDROCHLORIDE WITH HUMAN SERUM ALBUMIN. Odesa National University Herald. Chemistry 2018;23(1(65)):96-108. https://doi.org/10.18524/2304-0947.2018.1(65).124550

Valeur B and Brochon JC. New Trends in Fluorescence Spectroscopy 6th edn. Berlin :Springer; 1999, pp. 25-28.

Lakowicz JR. Principles of Fluorescence Spectroscopy 3rd edn:New York:Springer; 2006.

Lakowicz J, Weber G. Quenching of fluorescence by oxygen. Probe for structural fluctuations in macromolecules. Biochemistry 1973;12(21):4161-4170. https://doi.org/10.1021/bi00745a020

Silva D, Cortez C, Cunha-Bastos J, Louro S. Methyl parathion interaction with human and bovine serum albumin. Toxicology Letters 2004;147(1):53-61. https://doi.org/10.1016/j.toxlet.2003.10.014

Ross P, Subramanian S. Thermodynamics of protein association reactions: forces contributing to stability. Biochemistry 1981;20(11):3096-3102. https://doi.org/10.1021/bi00514a017

Förster T. Zwischenmolekulare Energiewanderung und Fluoreszenz. Annalen der Physik 1948;437(1-2):55-75. https://doi.org/10.1002/andp.19484370105

Wu P, Brand L. Resonance Energy Transfer: Methods and Applications. Analytical Biochemistry 1994;218(1):1-13. https://doi.org/10.1006/abio.1994.1134

Shaklai N, Yguerabide J, Ranney H. Interaction of hemoglobin with red blood cell membranes as shown by a fluorescent chromophore. Biochemistry 1977;16(25):5585-5592. https://doi.org/10.1021/bi00644a031

Miller J.N. Recent advances in molecular luminescence analysis. Proc. Anal. Div. Chem. Soc. 1979;16:203-208.