Modelling thermodynamic properties of binary Cu–Eu and ternary Al–Cu–Eu melts

Authors

DOI:

https://doi.org/10.17721/fujcV8I2P73-82

Keywords:

Aluminium, Copper, Europium, thermodynamic properties, modelling

Abstract

Model calculations of the whole set of thermodynamic properties of liquid alloys for the binary Cu–Eu and ternary Al–Cu–Eu systems have been performed. Authors used the ideal associated solution model (IAS model) for calculation of the entropies and excess Gibbs energies of mixing for these systems. The binaries were given as the Redlich-Kister polynomials. The thermodynamic properties for the ternary system are described using the Redlich-Kister-Muggianu formalism. A comparison of the surfaces of excess Gibbs energy and entropy of mixing for liquid Al–Cu–Eu alloys at 1350 K demonstrates that the ordering related to the formation of rather strong associates in the Al–Eu system significantly affects the concentration dependence of the excess Gibbs energy of mixing in the liquid phase at this temperature.

Author Biographies

Natalia Vladimirovna Kotova, Taras Shevchenko National University of Kyiv

Department of Chemistry

Natalia Valerievna Golovata, Taras Shevchenko National University of Kyiv

Department of Chemistry

Natalia Igorevna Usenko, Taras Shevchenko National University of Kyiv

Department of Chemistry

References

Jin L, Kang Y, Chartrand P, Fuerst C. Erratum to “Thermodynamic evaluation and optimization of Al–La, Al–Ce, Al–Pr, Al–Nd and Al–Sm systems using the Modified Quasichemical Model for liquids” [CALPHAD 35 (2011) 30–41]. Calphad 2012;38:194. https://doi.org/10.1016/j.calphad.2012.06.003

Huang G, Liu L, Zhang L, Jin Z. Thermodynamic description of the Al-Cu-Yb ternary system supported by first-principles calculations. Journal of Mining and Metallurgy, Section B: Metallurgy 2016;52(2):177-183. https://doi.org/10.2298/jmmb150709013h

Felner I, Nowik I. Magnetism and hyperfine interactions of 57Fe, 151Eu, 155Gd, 161Dy, 166Er and 170Yb in RM4Al8 compounds (R = rare earth or Y, M = Cr, Mn, Fe, Cu). Journal of Physics and Chemistry of Solids 1979;40(12):1035-1044. https://doi.org/10.1016/0022-3697(79)90135-5

Ivanov M, Usenko N, Kotova N. Enthalpies of mixing in binary Cu–Eu and ternary Al–Cu–Eu liquid alloys. International Journal of Materials Research 2020;111(4):273-282. https://doi.org/10.3139/146.111895

Witusiewicz VT, Stolz UK, Arpshofen I, Sommer F. Thermodynamics of liquid Al-Cu-Zr alloys. Z. Metallkd. 1998; 89(10): 704-713.

Witusiewicz T, Hecht U, Fries SG, Rex S. The Ag-Al-Cu system Part I: Reassessment of the constituent binaries on the basis of new experimental data. J. All. Comp. 2004; 385: 133-143.

Ivanov M, Shevchenko M, Berezutskii V, Kudin V, Sudavtsova V. Thermodynamic properties of Al–Eu liquid alloys. Powder Metallurgy and Metal Ceramics 2011;50(7-8):538-543. https://doi.org/10.1007/s11106-011-9356-3

Massalski TB (Ed.): Binary Alloy Phase Diagrams, 1st ed., ASM International, Metals Park, OH, 1986.

Miedema A, de Châtel P, de Boer F. Cohesion in alloys — fundamentals of a semi-empirical model. Physica B+C 1980;100(1):1-28. https://doi.org/10.1016/0378-4363(80)90054-6

De Boer FR, Boom R, Mattens WCM, Miedema AR, Niessen AK. Cohesion in Metals. North-Holland, Amsterdam, 1988, 758.

Li H, Zhang S, Chen Y, Cheng M, Song H, Liu J. Estimation of thermodynamic properties of Cu–La binary alloy with modified Miedema’s theory. Russian Journal of Physical Chemistry A 2015;90(1):11-17. https://doi.org/10.1134/s003602441601012x

Turchanin MA, Belokonenko IV, Agraval PG. Use of the ideal associated solution theory for assessment of the temperature–composition dependence of the thermodynamic properties of binary melts. Rasplavy. 2001; 1: 58-69.

Golovata N, Kotova N, Usenko N. Modeliuvannia termodynamichnykh vlastyvostej rozplaviv v systemakh Cu–Lu ta Fe–Lu. Visnyk Kyivs'koho natsional'noho universytetu imeni Tarasa Shevchenka. Khimiia. 2017; 53(1): 69-71.

Batalin GI, Beloborodova EA. Primenenie teorii «okruzhennogo atoma» v termodinamike zhidkih metallicheskih splavov. Zhurnal fizicheskoj himii. 1971; 45(8): 1954-1960.

Golovata NV, Usenko NI, Kotova NV. Zastosuvannia modeli «otochenoho atoma» do opysu termodynamichnykh vlastyvostej deiakykh metalichnykh rozplaviv. Ukraynskyj khymycheskyj zhurnal. 2018; 84(1): 3-10.

Hillert M. Empirical methods of predicting and representing thermodynamic properties of ternary solution phases. Calphad 1980;4(1):1-12. https://doi.org/10.1016/0364-5916(80)90016-4

Luck R, Predel B. The enthalpies of mixing of liquid iron–tin alloysdetermined by means of a new high-temperature calorimeter. Zeitschr. Metallkd. 1985; 76(10): 684-686.

Subramanian PR. Phase diagrams of binary copper alloys. D.E. Laughlin editors, Materials Park, OH: ASM International, 1994.

Costa G, Franceschi E, Tawansi A. Phase equilibria in the EuCu system. Journal of the Less Common Metals 1985;106(1):175-182. https://doi.org/10.1016/0022-5088(85)90378-9

Debski A, Debski R, Gasior W. New Features of Entall Database: Comparison of Experimental and Model Formation Enthalpies/ Nowe Funkcje Bazy Danych Entall: Porównanie Doświadczalnych I Modelowych Entalpii Tworzenia. Archives of Metallurgy and Materials 2014;59(4):1337-1343. https://doi.org/10.2478/amm-2014-0228

Downloads

Published

2020-12-22

Issue

Section

Articles