High efficiency of calcined anionic clay to remove the chromate anions CrO42-from polluted water

El Hassane Mourid, Mohamed Lakraimi, Lhaj Benaziz


Calcined anionic clay based on zinc and aluminum was used to remove the pollutant CrO42- from wastewater. This adsorbent material derived from layered double hydroxide (LDH) was chosen for its higher adsorption capacity, its affinity for most pollutants, and its non-toxicity. The kinetic study suggesting a high affinity between the pollutant and calcined LDH (CLDH). The pollutant is retained in multilayer and follows the Freundlich model. Thermodynamic study indicates a physical interaction. The elimination reaches 100% with a retention capacity of 3333 mg/g. After cycles of regeneration and in comparison with other adsorbents, CLDH has proven its efficiency and high performances to remove CrO42- anions.


calcined anionic clay; anions CrO42-; elimination; intercalation; regeneration

Full Text:



Shahbazi A, Younesi H, Badiei A, . Functionalized SBA-15 mesoporous silica by melamine-based dendrimer amines for adsorptive characteristics of Pb(II), Cu(II) and Cd(II) heavy metal ions in batch and fixed bed column. Chemical Engineering Journal 2011;168(2):505-518. https://doi.org/10.1016/j.cej.2010.11.053

Cocheci L, Barvinschi P, Pode R, Seftel E, Popovici E, . Chromium(VI) Ion Removal from Aqueous Solutions Using a Zn–Al-Type Layered Double Hydroxide. Adsorption Science & Technology 2010;28(3):267-279. https://doi.org/10.1260/0263-6174.28.3.267

Yuan X, Wang Y, Wang J, Zhou C, Tang Q, Rao X, . Calcined graphene/MgAl-layered double hydroxides for enhanced Cr(VI) removal. Chemical Engineering Journal 2013;221:204-213. https://doi.org/10.1016/j.cej.2013.01.090

Álvarez P, Blanco C, Granda M, . The adsorption of chromium (VI) from industrial wastewater by acid and base-activated lignocellulosic residues. Journal of Hazardous Materials 2007;144(1-2):400-405. https://doi.org/10.1016/j.jhazmat.2006.10.052

Joshi K, Shrivastava V, . Photocatalytic degradation of Chromium (VI) from wastewater using nanomaterials like TiO2, ZnO, and CdS. Applied Nanoscience 2011;1(3):147-155. https://doi.org/10.1007/s13204-011-0023-2

Gueye M, Richardson Y, Kafack F, Blin J, . High efficiency activated carbons from African biomass residues for the removal of chromium(VI) from wastewater. Journal of Environmental Chemical Engineering 2014;2(1):273-281. https://doi.org/10.1016/j.jece.2013.12.014

Huang M, Ai H, Xu X, Chen K, Niu H, Zhu H, Sun J, Du D, Chen L, . Nitric oxide alleviates toxicity of hexavalent chromium on tall fescue and improves performance of photosystem II. Ecotoxicology and Environmental Safety 2018;164:32-40. https://doi.org/10.1016/j.ecoenv.2018.07.118

Ramos-Ramírez E, Ortega N, Soto C, Gutiérrez M, . Adsorption isotherm studies of chromium (VI) from aqueous solutions using sol–gel hydrotalcite-like compounds. Journal of Hazardous Materials 2009;172(2-3):1527-1531. https://doi.org/10.1016/j.jhazmat.2009.08.023

Alemu A, Lemma B, Gabbiye N, Alula M, Desta M, . Corrigendum to “Removal of chromium (VI) from aqueous solution using vesicular basalt: A potential low cost wastewater treatment system” [Heliyon 4(7) (July 2018), Article e00682]. Heliyon 2018;4(7):e00712. https://doi.org/10.1016/j.heliyon.2018.e00712

Langård S, . Chromium carcinogenicity; A review of experimental animal data. Science of The Total Environment 1988;71(3):341-350. https://doi.org/10.1016/0048-9697(88)90206-9

Loyaux-Lawniczak S, Lecomte P, Ehrhardt J, . Behavior of Hexavalent Chromium in a Polluted Groundwater: Redox Processes and Immobilization in Soils. Environmental Science & Technology 2001;35(7):1350-1357. https://doi.org/10.1021/es001073l

Felter S, Dourson M, . Hexavalent Chromium-Contaminated Soils: Options for Risk Assessment and Risk Management. Regulatory Toxicology and Pharmacology 1997;25(1):43-59. https://doi.org/10.1006/rtph.1996.1073

Tzou Y, Chen Y, Wang M, . Chromate sorption by acidic and alkaline soils. Journal of Environmental Science and Health, Part A 1998;33(8):1607-1630. https://doi.org/10.1080/10934529809376807

Khezami L, Capart R, . Removal of chromium(VI) from aqueous solution by activated carbons: Kinetic and equilibrium studies. Journal of Hazardous Materials 2005;123(1-3):223-231. https://doi.org/10.1016/j.jhazmat.2005.04.012

Zhou J, Wu P, Dang Z, Zhu N, Li P, Wu J, Wang X, . Polymeric Fe/Zr pillared montmorillonite for the removal of Cr(VI) from aqueous solutions. Chemical Engineering Journal 2010;162(3):1035-1044. https://doi.org/10.1016/j.cej.2010.07.016

Luo P, Zhang J, Zhang B, Wang J, Zhao Y, Liu J, . Preparation and Characterization of Silane Coupling Agent Modified Halloysite for Cr(VI) Removal. Industrial & Engineering Chemistry Research 2011;50(17):10246-10252. https://doi.org/10.1021/ie200951n

Monser L, Adhoum N, . Tartrazine modified activated carbon for the removal of Pb(II), Cd(II) and Cr(III). Journal of Hazardous Materials 2009;161(1):263-269. https://doi.org/10.1016/j.jhazmat.2008.03.120

Mohan D, Pittman Jr. C, . Activated carbons and low cost adsorbents for remediation of tri- and hexavalent chromium from water. Journal of Hazardous Materials 2006;137(2):762-811. https://doi.org/10.1016/j.jhazmat.2006.06.060

Jiang Y, Wu Y, Liu J, Xia X, Wang D, . Ammonium pyrrolidinedithiocarbamate-modified activated carbon micro-column extraction for the determination of As(III) in water by graphite furnace atomic absorption spectrometry. Microchimica Acta 2008;161(1-2):137-142. https://doi.org/10.1007/s00604-007-0908-7

Jung C, Heo J, Han J, Her N, Lee S, Oh J, Ryu J, Yoon Y, . Hexavalent chromium removal by various adsorbents: Powdered activated carbon, chitosan, and single/multi-walled carbon nanotubes. Separation and Purification Technology 2013;106:63-71. https://doi.org/10.1016/j.seppur.2012.12.028

Werkneh A, Habtu NG, Beyene HD. Removal of hexavalent chromium from tannery wastewater using activated carbon primed from sugarcane bagasse: Adsorption/desorption studies.American Journal of Applied Chemistry 2014; 2:128-135 https://doi.org/10.11648/j.ajac.20140206.16

Yang J, Yu M, Chen W, . Adsorption of hexavalent chromium from aqueous solution by activated carbon prepared from longan seed: Kinetics, equilibrium and thermodynamics. Journal of Industrial and Engineering Chemistry 2015;21:414-422. https://doi.org/10.1016/j.jiec.2014.02.054

Dedkova V, Shvoeva O, Savvin S, . Sorption-spectrophotometric determination of zirconium and chromium(VI) from a single sample on a two-layer support using Arsenazo III and 1,5-diphenylcarbazide. Journal of Analytical Chemistry 2013;68(2):117-122. https://doi.org/10.1134/s1061934813020068

Suryati L, , Sulistyarti H, Atikah A, , . Development of Spectrophotometric Method for Determination of Chromium Species Using Hypochlorite Agent Based on the Formation of Cr(VI)-Diphenylcarbazide Complex. The Journal of Pure and Applied Chemistry Research 2015;4(1):34-41. https://doi.org/10.21776/ub.jpacr.2015.004.01.183

Alvarado L, Ramírez A, Rodríguez-Torres I, . Cr(VI) removal by continuous electrodeionization: Study of its basic technologies. Desalination 2009;249(1):423-428. https://doi.org/10.1016/j.desal.2009.06.051

Boclair J, Braterman P, . Layered Double Hydroxide Stability. 1. Relative Stabilities of Layered Double Hydroxides and Their Simple Counterparts. Chemistry of Materials 1999;11(2):298-302. https://doi.org/10.1021/cm980523u

Yan L, Yang K, Shan R, Yu H, Du B, . Calcined ZnAl- and Fe3O4/ZnAl–layered double hydroxides for efficient removal of Cr(vi) from aqueous solution. RSC Advances 2015;5(117):96495-96503. https://doi.org/10.1039/c5ra17058c

Ahmad M, Ahmad Puad N, Bello O, . Kinetic, equilibrium and thermodynamic studies of synthetic dye removal using pomegranate peel activated carbon prepared by microwave-induced KOH activation. Water Resources and Industry 2014;6:18-35. https://doi.org/10.1016/j.wri.2014.06.002

Lazaridis N, Asouhidou D, . Kinetics of sorptive removal of chromium(VI) from aqueous solutions by calcined Mg–Al–CO3 hydrotalcite. Water Research 2003;37(12):2875-2882. https://doi.org/10.1016/s0043-1354(03)00119-2

Zhang B, Luan L, Gao R, Li F, Li Y, Wu T, . Rapid and effective removal of Cr(VI) from aqueous solution using exfoliated LDH nanosheets. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2017;520:399-408. https://doi.org/10.1016/j.colsurfa.2017.01.074

Fulazzaky M, Khamidun M, Omar R, . Understanding of mass transfer resistance for the adsorption of solute onto porous material from the modified mass transfer factor models. Chemical Engineering Journal 2013;228:1023-1029. https://doi.org/10.1016/j.cej.2013.05.100

Karthikeyan G, Ilango S, . Adsorption of Cr(VI) onto Activated Carbons Prepared from Indigenous Materials. E-Journal of Chemistry 2008;5(4):666-678. https://doi.org/10.1155/2008/109398

Doğan M, Abak H, Alkan M, . Adsorption of methylene blue onto hazelnut shell: Kinetics, mechanism and activation parameters. Journal of Hazardous Materials 2009;164(1):172-181. https://doi.org/10.1016/j.jhazmat.2008.07.155

Ghorbani-Khosrowshahi S, Behnajady M, . Chromium(VI) adsorption from aqueous solution by prepared biochar from Onopordom Heteracanthom. International Journal of Environmental Science and Technology 2016;13(7):1803-1814. https://doi.org/10.1007/s13762-016-0978-3

Ho Y, . Removal of copper ions from aqueous solution by tree fern. Water Research 2003;37(10):2323-2330. https://doi.org/10.1016/s0043-1354(03)00002-2

Prasad AL, Santhi T. Adsorption of hazardous cationic dyes from aqueous solution onto Acacia nilotica leaves as an eco-friendly adsorbent. Sustainable Environment Research 2012; 22(2): 113-122.

Gorzin F, Bahri Rasht Abadi M, . Adsorption of Cr(VI) from aqueous solution by adsorbent prepared from paper mill sludge: Kinetics and thermodynamics studies. Adsorption Science & Technology 2017;36(1-2):149-169. https://doi.org/10.1177/0263617416686976

Oguz E, . Adsorption characteristics and the kinetics of the Cr(VI) on the Thuja oriantalis. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2005;252(2-3):121-128. https://doi.org/10.1016/j.colsurfa.2004.10.004

Romero-González J, Peralta-Videa J, Rodrı́guez E, Ramirez S, Gardea-Torresdey J, . Determination of thermodynamic parameters of Cr(VI) adsorption from aqueous solution onto Agave lechuguilla biomass. The Journal of Chemical Thermodynamics 2005;37(4):343-347. https://doi.org/10.1016/j.jct.2004.09.013

Zhao D, Sheng G, Hu J, Chen C, Wang X, . The adsorption of Pb(II) on Mg2Al layered double hydroxide. Chemical Engineering Journal 2011;171(1):167-174. https://doi.org/10.1016/j.cej.2011.03.082

Cantu Y, Remes A, Reyna A, Martinez D, Villarreal J, Ramos H, Trevino S, Tamez C, Martinez A, Eubanks T, Parsons J, . Thermodynamics, kinetics, and activation energy studies of the sorption of chromium(III) and chromium(VI) to a Mn3O4 nanomaterial. Chemical Engineering Journal 2014;254:374-383. https://doi.org/10.1016/j.cej.2014.05.110

Aksu Z, . Equilibrium and kinetic modelling of cadmium(II) biosorption by C. vulgaris in a batch system: effect of temperature. Separation and Purification Technology 2001;21(3):285-294. https://doi.org/10.1016/s1383-5866(00)00212-4

Padmavathy V, . Biosorption of nickel(II) ions by baker’s yeast: Kinetic, thermodynamic and desorption studies. Bioresource Technology 2008;99(8):3100-3109. https://doi.org/10.1016/j.biortech.2007.05.070

Giles C, MacEwan T, Nakhwa S, Smith D, . 786. Studies in adsorption. Part XI. A system of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids. Journal of the Chemical Society (Resumed) 1960;:3973. https://doi.org/10.1039/jr9600003973

. Chromium Ions Removal from Wastewater Using Activated Iraqi Bentonite. International Journal of Innovative Research in Science, Engineering and Technology 2015;04(02):15-25. https://doi.org/10.15680/ijirset.2015.0402003

Wang W, Zhou J, Achari G, Yu J, Cai W, . Cr(VI) removal from aqueous solutions by hydrothermal synthetic layered double hydroxides: Adsorption performance, coexisting anions and regeneration studies. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2014;457:33-40. https://doi.org/10.1016/j.colsurfa.2014.05.034

Sevim A, Hojiyev R, Gül A, Çelik M, . An investigation of the kinetics and thermodynamics of the adsorption of a cationic cobalt porphyrazine onto sepiolite. Dyes and Pigments 2011;88(1):25-38. https://doi.org/10.1016/j.dyepig.2010.04.011

Zhang F, Du N, Li H, Liang X, Hou W, . Sorption of Cr(vi) on Mg–Al–Fe layered double hydroxides synthesized by a mechanochemical method. RSC Adv. 2014;4(87):46823-46830. https://doi.org/10.1039/c4ra07553f

Jaiswal A, Mani R, Banerjee S, Gautam R, Chattopadhyaya M, . Synthesis of novel nano-layered double hydroxide by urea hydrolysis method and their application in removal of chromium(VI) from aqueous solution: Kinetic, thermodynamic and equilibrium studies. Journal of Molecular Liquids 2015;202:52-61. https://doi.org/10.1016/j.molliq.2014.12.004

Álvarez R, Tóffolo A, Pérez V, Linares C, . Synthesis and Characterization of CoMo/Zn–Al Mixed Oxide Catalysts for Hydrodesulphuration of Thiophene. Catalysis Letters 2010;137(3-4):150-155. https://doi.org/10.1007/s10562-010-0337-9

Malherbe F, Bigey L, Forano C, de Roy A, Besse J, . Structural aspects and thermal properties of takovite-like layered double hydroxides pillared with chromium oxo-anions. Journal of the Chemical Society, Dalton Transactions 1999;(21):3831-3839. https://doi.org/10.1039/a903766g

Prasanna S, Rao R, Kamath P, . Layered double hydroxides as potential chromate scavengers. Journal of Colloid and Interface Science 2006;304(2):292-299. https://doi.org/10.1016/j.jcis.2006.08.064

Nakamoto K. Infrared and Raman Spectra of Inorganic and Coordination Compounds, New York: Wiley, 1963.

El Malki K, Guenane M, Forano C, De Roy A, Besse J, . Inorganic and Organic Anionic Pillars Intercalated in Lamellar Double Hydroxides. Materials Science Forum 1992;91-93:171-176. https://doi.org/10.4028/www.scientific.net/msf.91-93.171

Newman S, Jones W, . Synthesis, characterization and applications of layered double hydroxides containing organic guests. New Journal of Chemistry 1998;22(2):105-115. https://doi.org/10.1039/a708319j

Drits V, . New Members of the Hydrotalcite-Manasseite Group. Clays and Clay Minerals 1987;35(6):401-417. https://doi.org/10.1346/ccmn.1987.0350601

Murthy V, Smith H, Zhang H, Smith S, . Molecular Modeling of Hydrotalcite Structure Intercalated with Transition Metal Oxide Anions: CrO42–and VO43–. The Journal of Physical Chemistry A 2011;115(46):13673-13683. https://doi.org/10.1021/jp2079499

Pan G, Xu M, Chen H, Tang P, Cao F, Ni Z, . Interlayer Structure and Ion-Exchange Properties of Hydrotalcite Intercalated with CO32-, CrO42-, SO42- and NO3-. Advanced Materials Research 2011;287-290:2102-2105. https://doi.org/10.4028/www.scientific.net/amr.287-290.2102

Kumar N, Reddy L, Parashar V, Ngila J, . Controlled synthesis of microsheets of ZnAl layered double hydroxides hexagonal nanoplates for efficient removal of Cr(VI) ions and anionic dye from water. Journal of Environmental Chemical Engineering 2017;5(2):1718-1731. https://doi.org/10.1016/j.jece.2017.03.014

Rahimi Bourestan N, Nematollahzadeh A, Parchehbaf Jadid A, Basharnavaz H, . Chromium removal from water using granular ferric hydroxide adsorbents: An in-depth adsorption investigation and the optimization. Chemical Physics Letters 2020;748:137395. https://doi.org/10.1016/j.cplett.2020.137395

Jalayeri H, Aprea P, Caputo D, Peluso A, Pepe F, . Synthesis of amino-functionalized MIL-101(Cr) MOF for hexavalent chromium adsorption from aqueous solutions. Environmental Nanotechnology, Monitoring & Management 2020;14:100300. https://doi.org/10.1016/j.enmm.2020.100300

Chen Y, An D, Sun S, Gao J, Qian L, . Reduction and Removal of Chromium VI in Water by Powdered Activated Carbon. Materials 2018;11(2):269. https://doi.org/10.3390/ma11020269

Ajmani A, Patra C, Subbiah S, Narayanasamy S, . Packed bed column studies of hexavalent chromium adsorption by zinc chloride activated carbon synthesized from Phanera vahlii fruit biomass. Journal of Environmental Chemical Engineering 2020;8(4):103825. https://doi.org/10.1016/j.jece.2020.103825

Mondal N, Chakraborty S, . Adsorption of Cr(VI) from aqueous solution on graphene oxide (GO) prepared from graphite: equilibrium, kinetic and thermodynamic studies. Applied Water Science 2020;10(2):. https://doi.org/10.1007/s13201-020-1142-2

Dashkhuu K, . Removal of Chromium from Aqueous Solution by Thermally Treated Mgal Layered Double Hydroxide. Annals of Civil and Environmental Engineering 2017;1(1):001-008. https://doi.org/10.29328/journal.acee.1001001

Jiang X, Fan W, Li C, Wang Y, Bai J, Yang H, Liu X, . Removal of Cr(vi) from wastewater by a two-step method of oxalic acid reduction-modified fly ash adsorption. RSC Advances 2019;9(58):33949-33956. https://doi.org/10.1039/c9ra05980f

Kumari D, Mazumder P, Kumar M, Deka J, Shim J, . Simultaneous removal of Cong red and Cr (VI) in aqueous solution by using Mn powder extracted from battery waste solution. Groundwater for Sustainable Development 2018;7:459-464. https://doi.org/10.1016/j.gsd.2018.01.001

Liu H, Zhang F, Peng Z, . Adsorption mechanism of Cr(VI) onto GO/PAMAMs composites. Scientific Reports 2019;9(1):. https://doi.org/10.1038/s41598-019-40344-9

Vu X, Nguyen L, Van H, Nguyen D, Nguyen T, Nguyen Q, Ha L, . Adsorption of Chromium(VI) onto Freshwater Snail Shell-Derived Biosorbent from Aqueous Solutions: Equilibrium, Kinetics, and Thermodynamics. Journal of Chemistry 2019;2019:1-11. https://doi.org/10.1155/2019/3038103

Zhong L, He X, Qu J, Li X, Lei Z, Zhang Q, Liu X, . Precursor preparation for Ca-Al layered double hydroxide to remove hexavalent chromium coexisting with calcium and magnesium chlorides. Journal of Solid State Chemistry 2017;245:200-206. https://doi.org/10.1016/j.jssc.2016.10.022

Islam M, Angove M, Morton D, Pramanik B, Awual M, . A mechanistic approach of chromium (VI) adsorption onto manganese oxides and boehmite. Journal of Environmental Chemical Engineering 2020;8(2):103515. https://doi.org/10.1016/j.jece.2019.103515

Islam M, Khan M, Mallik A, Rahman M, . Preparation of bio-inspired trimethoxysilyl group terminated poly(1-vinylimidazole)-modified-chitosan composite for adsorption of chromium (VI) ions. Journal of Hazardous Materials 2019;379:120792. https://doi.org/10.1016/j.jhazmat.2019.120792

Kumar P, Chauhan M, . Adsorption of chromium (VI) from the synthetic aqueous solution using chemically modified dried water hyacinth roots. Journal of Environmental Chemical Engineering 2019;7(4):103218. https://doi.org/10.1016/j.jece.2019.103218