Structures and properties of three new homobinuclear nanosized supramolecular copper coordination polymers derived from carboxylate type ligands and benzimidazole

Rasel Mukred, Samir Osman Mohammed

Abstract

Three new homobinuclear nanosized supramolecular copper coordination polymers are hydrothermally synthesized by self-assembly reaction of L-tyrosine (Tyr), terephthalic acid (H2bdc), pyromellitic acid (H4btec) and benzimidazole (Hbzim) with copper chloride salt to generate with formula [[Cu2(tyr)2(bzim)2(Cl)2(H2O)2]]n 1, [[Cu2(bdc)2(bzim)2(H2O)6].3H2O]n 2 and [Cu2(H2btec)(bzim)(H2O)6].2H2O]n 3, which have been investigated by elemental analysis, molar conductivity and magnetic measurements, FT-IR and UV-Vis spectroscopy, (TGA/DTA) thermal analysis and X-ray powder diffraction(XRPD) analysis as well as MM2 theoretical calculations. The magnetic moment and electronic spectra of the complexes are certainly indicating the octahedral geometries. Thermal analysis of the complexes confirms the suggested structures and thermal stability. The results of the XRPD analysis and the average nanosized values of the complexes have nanosized supramolecular polymers in the triclinic system. The MM2 theoretical calculations are supported by the proposed structures.

Keywords

polymer; Molecular modeling MM2; spectroscopy; thermal analysis; XRD

Full Text:

PDF

References

Ariga K, Kunitake T. Supramolecular chemistry-fundamentals and applications: advanced textbook: Springer Science & Business Media; 2006. https://doi.org/10.1007/b137036

Bosman A, Sijbesma R, Meijer E. Supramolecular polymers at work. Materials Today 2004;7(4):34-39. https://doi.org/10.1016/s1369-7021(04)00187-7

Patra D, Ramesh M, Sahu D, Padhy H, Chu C, Wei K, Lin H. Synthesis and applications of a novel supramolecular polymer network with multiple H-bonded melamine pendants and uracil crosslinkers. Journal of Polymer Science Part A: Polymer Chemistry 2011;50(5):967-975. https://doi.org/10.1002/pola.25853

Burattini S, Greenland B, Merino D, Weng W, Seppala J, Colquhoun H, Hayes W, Mackay M, Hamley I, Rowan S. A Healable Supramolecular Polymer Blend Based on Aromatic π−π Stacking and Hydrogen-Bonding Interactions. Journal of the American Chemical Society 2010;132(34):12051-12058. https://doi.org/10.1021/ja104446r

Aida T, Meijer E, Stupp S. Functional Supramolecular Polymers. Science 2012;335(6070):813-817. https://doi.org/10.1126/science.1205962

Obert E, Bellot M, Bouteiller L, Andrioletti F, Lehen-Ferrenbach C, Boué F. Both Water- and Organo-Soluble Supramolecular Polymer Stabilized by Hydrogen-Bonding and Hydrophobic Interactions. Journal of the American Chemical Society 2007;129(50):15601-15605. https://doi.org/10.1021/ja074296l

Das A, Ghosh S. Supramolecular Assemblies by Charge-Transfer Interactions between Donor and Acceptor Chromophores. Angewandte Chemie International Edition 2014;53(8):2038-2054. https://doi.org/10.1002/anie.201307756

Wang Y, Xu H, Zhang X. Tuning the Amphiphilicity of Building Blocks: Controlled Self-Assembly and Disassembly for Functional Supramolecular Materials. Advanced Materials 2009;21(28):2849-2864. https://doi.org/10.1002/adma.200803276

Evans N, Beer P. Advances in Anion Supramolecular Chemistry: From Recognition to Chemical Applications. Angewandte Chemie International Edition 2014;53(44):11716-11754. https://doi.org/10.1002/anie.201309937

Ghosh S, Bharadwaj P. Puckered-Boat Conformation Hexameric Water Clusters Stabilized in a 2D Metal−Organic Framework Structure Built from Cu(II) and 1,2,4,5-Benzenetetracarboxylic Acid. Inorganic Chemistry 2004;43(17):5180-5182. https://doi.org/10.1021/ic049739q

Cheng D, Khan M, Houser R. Copper(ii) and cobalt(ii) coordination polymers with bridging 1,2,4,5-benzenetetracarboxylate and N-methylimidazole: coordination number-determined sheet topology. Journal of the Chemical Society, Dalton Transactions 2002;(24):4555. https://doi.org/10.1039/b207559h

Dai J, Wu X, Fu Z, Cui C, Hu S, Du W, Wu L, Zhang H, Sun R. Synthesis, Structure, and Fluorescence of the Novel Cadmium(II)−Trimesate Coordination Polymers with Different Coordination Architectures. Inorganic Chemistry 2002;41(6):1391-1396. https://doi.org/10.1021/ic010794y

Xu Q, Zhou Q, Lu J, Xia X, Wang L, Zhang Y. Synthesis, structures and NLO properties of five non-centrosymmetric coordination compounds from the copper(II)/dps system (dps=4,4′-dipyridyl sulfide). Polyhedron 2007;26(17):4849-4859. https://doi.org/10.1016/j.poly.2007.06.033

Dobrawa R, Würthner F. Metallosupramolecular approach toward functional coordination polymers. Journal of Polymer Science Part A: Polymer Chemistry 2005;43(21):4981-4995. https://doi.org/10.1002/pola.20997

Liu S, Yi J, Zuo W, Wang K, Wang D, Sun W. N-(2-benzimidazolylquinolin-8-yl)benzamidate half-titanocene chlorides: Synthesis, characterization and their catalytic behavior toward ethylene polymerization. Journal of Polymer Science Part A: Polymer Chemistry 2009;47(12):3154-3169. https://doi.org/10.1002/pola.23413

Baugh L, Sissano J, Kacker S, Berluche E, Stibrany R, Schulz D, Rucker S. Fluorinated and ring-substituted bisbenzimidazole copper complexes for ethylene/acrylate copolymerization. Journal of Polymer Science Part A: Polymer Chemistry 2006;44(6):1817-1840. https://doi.org/10.1002/pola.21269

Chávez-Béjar M, Báez-Viveros J, Martínez A, Bolívar F, Gosset G. Biotechnological production of l-tyrosine and derived compounds. Process Biochemistry 2012;47(7):1017-1026. https://doi.org/10.1016/j.procbio.2012.04.005

Refat M, El-Korashy S, Ahmed A. Preparation, structural characterization and biological evaluation of l-tyrosinate metal ion complexes. Journal of Molecular Structure 2008;881(1-3):28-45. https://doi.org/10.1016/j.molstruc.2007.08.027

Zhang S, Shi W, Cheng P. The coordination chemistry of N-heterocyclic carboxylic acid: A comparison of the coordination polymers constructed by 4,5-imidazoledicarboxylic acid and 1H-1,2,3-triazole-4,5-dicarboxylic acid. Coordination Chemistry Reviews 2017;352:108-150. https://doi.org/10.1016/j.ccr.2017.08.022

Yan L, Li C, Wang Y. Syntheses, characterizations and photoluminescent properties of two novel coordination polymers constructed by poly-carboxylate and N-heterocyclic ligands. Journal of Molecular Structure 2013;1035:455-461. https://doi.org/10.1016/j.molstruc.2012.11.066

Luo L, Lv G, Wang P, Liu Q, Chen K, Sun W. pH-Dependent cobalt(ii) frameworks with mixed 3,3′,5,5′-tetra(1H-imidazol-1-yl)-1,1′-biphenyl and 1,3,5-benzenetricarboxylate ligands: synthesis, structure and sorption property. CrystEngComm 2013;15(45):9537. https://doi.org/10.1039/c3ce41056k

Lin H, Le M, Liu D, Liu G, Wang X, Duan S. Four Cu(II)/Co(II) coordination polymers based on N,N′-di(3-pyridyl)sebacicdiamide: influence of different carboxylate ancillary ligands on structures and properties. Journal of Coordination Chemistry 2016;69(6):934-946. https://doi.org/10.1080/00958972.2016.1154952

Wang X, Luan J, Sui F, Lin H, Liu G, Xu C. Structural Diversities and Fluorescent and Photocatalytic Properties of a Series of CuII Coordination Polymers Constructed from Flexible Bis-pyridyl-bis-amide Ligands with Different Spacer Lengths and Different Aromatic Carboxylates. Crystal Growth & Design 2013;13(8):3561-3576. https://doi.org/10.1021/cg400538c

Lin H, Luan J, Wang X, Zhang J, Liu G, Tian A. Construction and properties of cobalt(ii)/copper(ii) coordination polymers based on N-donor ligands and polycarboxylates mixed ligands. RSC Adv. 2014;4(107):62430-62445. https://doi.org/10.1039/c4ra12367k

Boyd D, Lipkowitz K. Molecular mechanics: The method and its underlying philosophy. Journal of Chemical Education 1982;59(4):269. https://doi.org/10.1021/ed059p269

Cass M, Rzepa H, Rzepa D, Williams C. The Use of the Free, Open-Source Program Jmol To Generate an Interactive Web Site To Teach Molecular Symmetry. Journal of Chemical Education 2005;82(11):1736. https://doi.org/10.1021/ed082p1736

Singh TB, Rey L, Gartia R. Applications of PeakFit software in thermoluminescence studies. 2011.

Laugier J, Bochu B. Chekcell: Graphical powder indexing cell and space group assignment software. 2004.

Montarnal D, Tournilhac F, Hidalgo M, Leibler L. Epoxy-based networks combining chemical and supramolecular hydrogen-bonding crosslinks. Journal of Polymer Science Part A: Polymer Chemistry 2010;48(5):1133-1141. https://doi.org/10.1002/pola.23870

Sun G, Song Y, Liu Y, Tian X, Huang H, Zhu Y, Yuan Z, Feng X, Luo M, Liu S, Xu W, Luo F. A novel 2D→3D array in a vertical mode containing both polyrotaxane and polycatenane motifs. CrystEngComm 2012;14(18):5714. https://doi.org/10.1039/c2ce25456e

Kuo S. Hydrogen-bonding in polymer blends. Journal of Polymer Research 2008;15(6):459-486. https://doi.org/10.1007/s10965-008-9192-4

Lu L, Jun W, Wei-Ping W, Xiu-Lan Z, Bin X. The Effect of Carboxylic Geometry on Two Cu(II) Complexes. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry 2013;44(3):393-396. https://doi.org/10.1080/15533174.2013.771669

Sun H, Tottempudi U, Mottishaw J, Basa P, Putta A, Sykes A. Strengthening π–π Interactions While Suppressing Csp2–H···π (T-Shaped) Interactions via Perfluoroalkylation: A Crystallographic and Computational Study That Supports the Beneficial Formation of 1-D π–π Stacked Aromatic Materials. Crystal Growth & Design 2012;12(11):5655-5662. https://doi.org/10.1021/cg301151u

Yin H, Zhao H, Zhao Y. Propylthiouracil Solubility in Aqueous Solutions of Ethylene Glycol, N,N-Dimethylformamide, N-Methyl-2-pyrrolidone, and Dimethylsulfoxide: Measurement and Thermodynamic Modeling. Journal of Chemical & Engineering Data 2019;64(6):2836-2842. https://doi.org/10.1021/acs.jced.9b00201

Siesler H. Fourier transform infrared (ftir) spectroscopy in polymer research. Journal of Molecular Structure 1980;59:15-37. https://doi.org/10.1016/0022-2860(80)85063-0

Rardin RL, Tolman WB, Lippard SJ. Monodentate carboxylate complexes and the carboxylate shift: implications for polymetalloprotein structure and function. New J Chem. 1991;15(6):417-30.

Bravo A, Anacona J. . Transition Metal Chemistry 2001;26(1/2):20-23. https://doi.org/10.1023/a:1007128325639

Rakha T. Transition Metal Chelates Derived from Potassium Nicotinoyldithiocarbazate (KHNDC). Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry 2000;30(2):205-224. https://doi.org/10.1080/00945710009351758

Kumagai H, Kepert C, Kurmoo M. Construction of Hydrogen-Bonded and Coordination-Bonded Networks of Cobalt(II) with Pyromellitate: Synthesis, Structures, and Magnetic Properties. Inorganic Chemistry 2002;41(13):3410-3422. https://doi.org/10.1021/ic020065y

Chen W, Wang J, Chen C, Yue Q, Yuan H, Chen J, Wang S. Photoluminescent Metal−Organic Polymer Constructed from Trimetallic Clusters and Mixed Carboxylates. Inorganic Chemistry 2003;42(4):944-946. https://doi.org/10.1021/ic025871j

Nakamoto K. Infrared and R aman Spectra of Inorganic and Coordination Compounds. Handbook of Vibrational Spectroscopy. 2006. https://doi.org/10.1002/0470027320.s4104

Naumov P, Jovanovski G, Drew M, Ng S. Outer-sphere coordination, N-coordination and O-coordination of the deprotonated saccharin in copper(II) saccharinato complexes. Implications for the saccharinato carbonyl stretching frequency. Inorganica Chimica Acta 2001;314(1-2):154-162. https://doi.org/10.1016/s0020-1693(01)00306-1

Gaber M, Ayad M, El-Sayed Y. Synthesis, spectral and thermal studies of Co(II), Ni(II) and Cu(II) complexes 1-(4,6-dimethyl-pyrimidin-2-ylazo)-naphthalen-2-ol. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2005;62(1-3):694-702. https://doi.org/10.1016/j.saa.2005.02.039

Etaiw S, El-bendary M. Structure and applications of metal–organic framework based on cyanide and 3,5-dichloropyridine. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2013;110:304-310. https://doi.org/10.1016/j.saa.2013.03.049

Shen X, Qiao H, Li Z, Zhang H, Liu H, Yang R, Chen P, Hou H. 3D coordination polymer of copper (II)–potassium (I): Crystal structure and thermal decomposition kinetics. Inorganica Chimica Acta 2006;359(2):642-648. https://doi.org/10.1016/j.ica.2005.10.009

Padole Gaikwad G, Juneja H. Synthesis, thermal degradation, and kinetic parameters studies of some coordination polymers. Journal of Thermal Analysis and Calorimetry 2009;100(2):645-650. https://doi.org/10.1007/s10973-009-0510-9

Ebrahimi-Kahrizsangi R, Abbasi M. Evaluation of reliability of Coats-Redfern method for kinetic analysis of non-isothermal TGA. Transactions of Nonferrous Metals Society of China 2008;18(1):217-221. https://doi.org/10.1016/s1003-6326(08)60039-4

COATS A, REDFERN J. Kinetic Parameters from Thermogravimetric Data. Nature 1964;201(4914):68-69. https://doi.org/10.1038/201068a0

Lonhienne T, Gerday C, Feller G. Psychrophilic enzymes: revisiting the thermodynamic parameters of activation may explain local flexibility. Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology 2000;1543(1):1-10. https://doi.org/10.1016/s0167-4838(00)00210-7

Wright P. Electrical conductivity in ionic complexes of poly(ethylene oxide). British Polymer Journal 1975;7(5):319-327. https://doi.org/10.1002/pi.4980070505

Wang H. Thermal decomposition of solid oxygenated complexes formed by coal oxidation at low temperatures. Fuel 2002;81(15):1913-1923. https://doi.org/10.1016/s0016-2361(02)00122-9

Kandil S, El-Hefnawy G, Baker E. Thermal and spectral studies of 5-(phenylazo)-2-thiohydantoin and 5-(2- hydroxyphenylazo)-2-thiohydantoin complexes of cobalt(II), nickel(II) and copper(II). Thermochimica Acta 2004;414(2):105-113. https://doi.org/10.1016/j.tca.2003.11.021

El-Sonbati A, Diab M, El-Bindary A, Mohamed G, Morgan S. Thermal, spectroscopic studies and hydrogen bonding in supramolecular assembly of azo rhodanine complexes. Inorganica Chimica Acta 2015;430:96-107. https://doi.org/10.1016/j.ica.2015.02.031

Wu C, Lu C, Zhuang H, Huang J. Hybrid Coordination Polymer Constructed from β-Octamolybdates Linked by Quinoxaline and Its Oxidized Product Benzimidazole Coordinated to Binuclear Copper(I) Fragments. Inorganic Chemistry 2002;41(22):5636-5637. https://doi.org/10.1021/ic025668o

Miranda M, Sasaki J. The limit of application of the Scherrer equation. Acta Crystallographica Section A Foundations and Advances 2018;74(1):54-65. https://doi.org/10.1107/s2053273317014929