Potassium Carbonate Assisted Synthesis Of α, β, γ, δ-Unsaturated Ketones
DOI:
https://doi.org/10.17721/fujcV8I2P17-25Keywords:
Potassium carbonate, Unsaturated ketones, Claisen-Schmidt reaction, Condensation, EthanolAbstract
The Cinnamylideneacetophenones derivative is shows important medicinal properties and intermediate in organic synthesis. Several substituted α, β, γ, δ-Unsaturated Ketones were prepared in high yield and purity by direct reaction of substituted cinnamaldehyde and ketones in the presence of potassium carbonate as a base in ethanol at 50ºC. The merit of the method is short reaction times, high yield, easy work-up and purification process, inexpensive and easily available catalyst.
References
Al-Bayati F, Mohammed M, . Isolation, identification, and purification of cinnamaldehyde fromCinnamomum zeylanicumbark oil. An antibacterial study. Pharmaceutical Biology 2009;47(1):61-66. https://doi.org/10.1080/13880200802430607
Adabiardakani A, Mohammad H, Kargar H. Cinnamaldehyde Schiff Base Derivatives: A Short Review World Appl. Program. 2012; 2(11): 472-476.
Polaquini C, Torrezan G, Santos V, Nazaré A, Campos D, Almeida L, Silva I, Ferreira H, Pavan F, Duque C, Regasini L, . Antibacterial and Antitubercular Activities of Cinnamylideneacetophenones. Molecules 2017;22(10):1685. https://doi.org/10.3390/molecules22101685
Corrêa R, Fenner B, Buzzi F, Filho V, Nunes R, . Antinociceptive Activity and Preliminary Structure-Activity Relationship of Chalcone-Like Compounds. Zeitschrift für Naturforschung C 2008;63(11-12):830-836. https://doi.org/10.1515/znc-2008-11-1208
Weldon D, Saulsbury M, Goh J, Rowland L, Campbell P, Robinson L, Miller C, Christian J, Amis L, Taylor N, Dill C, Davis W, Evans S, Brantley E, . One-pot synthesis of cinnamylideneacetophenones and their in vitro cytotoxicity in breast cancer cells. Bioorganic & Medicinal Chemistry Letters 2014;24(15):3381-3384. https://doi.org/10.1016/j.bmcl.2014.05.089
Engi H, Gyemant N, Lorand T, Levai A, Ocsovszki I, Molnar J Cinnamylidene ketones as potential modulators of multidrug resistance in mouse lymphoma and human colon cancer cell lines. In vivo 2006; 20:119-124.
Riveira M, Tekwani B, Labadie G, Mischne M, . Synthesis and biological activity profile of novel 2-cinnamylidene-1,3-diones related to coruscanone A: promising new antileishmanial agents. MedChemComm 2012;3(10):1294. https://doi.org/10.1039/c2md20143g
Demers J, Hageman W, Johnson S, Klaubert D, Look R, Moore J, . Selective inhibitors of protein kinase C in a model of graft-vs-host disease. Bioorganic & Medicinal Chemistry Letters 1994;4(20):2451-2456. https://doi.org/10.1016/s0960-894x(01)80408-x
Babu K, Li X, Jacob M, Zhang Q, Khan S, Ferreira D, Clark A, . Synthesis, Antifungal Activity, and Structure−Activity Relationships of Coruscanone A Analogues. Journal of Medicinal Chemistry 2006;49(26):7877-7886. https://doi.org/10.1021/jm061123i
Sashidhara K, Kumar M, Modukuri R, Srivastava R, Soni A, Srivastava K, Singh S, Saxena J, Gauniyal H, Puri S, . Antiplasmodial activity of novel keto-enamine chalcone-chloroquine based hybrid pharmacophores. Bioorganic & Medicinal Chemistry 2012;20(9):2971-2981. https://doi.org/10.1016/j.bmc.2012.03.011
Silva E, Melo T, Sousa B, Resende D, Magalhães L, Segundo M, Silva A, Domingues M, . Do cinnamylideneacetophenones have antioxidant properties and a protective effect toward the oxidation of phosphatidylcholines?. European Journal of Medicinal Chemistry 2016;121:331-337. https://doi.org/10.1016/j.ejmech.2016.05.040
Kawamata J, Inoue K, . New Second-Order Nonlinear Optical Materials with a Cutoff Wavelength of 350 nm. 3-Benzylidene-D-camphor Derivatives. Chemistry Letters 1993;22(6):921-924. https://doi.org/10.1246/cl.1993.921
Varandas P, Rocha D, Paz F, Silva E, Silva A, . One-Pot Synthesis of Isoquinuclidines via 2,6-Diaryl-1,2-dihydropyridines using (E,E)-Cinnamylideneacetophenones as Templates. Synthesis 2018;50(10):1965-1972. https://doi.org/10.1055/s-0036-1591767
Resende D, Guieu S, Oliva C, Silva A, . Synthesis of 2,6-diaryl-1,2-dihydropyridines through a 6π-electrocyclization of N-sulfonylazatrienes. Tetrahedron Letters 2014;55(48):6585-6588. https://doi.org/10.1016/j.tetlet.2014.10.034
Lévai A, Simon A, Jenei A, Kálmán G, Jekő J, Tóth G, . Synthesis of spiro-1-pyrazolines by the reaction of exocyclic α,β,γ,δ-unsaturated ketones with diazomethane. Arkivoc 2009;2009(12):161-172. https://doi.org/10.3998/ark.5550190.0010.c14
Silva A, Cavaleiro J, Elguero J, . Oxidation of 4-Alkyl-2′-Hydroxy-2-cinnamylideneacetophenones with Thallium(III) Trinitrate: A New Synthesis of (E)-3-Styrylchromones. Liebigs Annalen 1997;1997(10):2065-2068. https://doi.org/10.1002/jlac.199719971009
Mallik AK, De SK, Chattopadhyay F A convenient synthesis of 2-benzoyl-1,5-diphenylpyrroles a class of potentially biologically active compounds. Ind. J. Chem. 2004; 43B(09):2032-2034.
LÉvai A, Patonay T, Silva A, Pinto D, Cavaleiro J, . Synthesis of 3-aryl-5-styryl-2-pyrazolines by the reaction of (E,E)-cinnamylideneacetophenones with hydrazines and their oxidation into pyrazoles. Journal of Heterocyclic Chemistry 2002;39(4):751-758. https://doi.org/10.1002/jhet.5570390421
Silva A, Resende D, Oliva C, Almeida Paz F, Cavaleiro J, . Domino Multicomponent Michael-Michael-Aldol Reactions under Phase-Transfer Catalysis: Diastereoselective Synthesis of Pentasubstituted Cyclohexanes. Synlett 2009;2010(01):115-118. https://doi.org/10.1055/s-0029-1218523
S. Silva A, Pinto D, Tavares H, Cavaleiro J, Jimeno M, Elguero J, . Novel (E)- and (Z)-2-Styrylchromones from (E, E)-2′-Hydroxycinnamylideneacetophenones – Xanthones from Daylight Photooxidative Cyclization of (E)-2-Styrylchromones. European Journal of Organic Chemistry 1998;1998(9):2031-2038. https://doi.org/10.1002/(sici)1099-0690(199809)1998:9<2031::aid-ejoc2031>3.0.co;2-#
Pinto D, Silva A, Lévai A, Cavaleiro J, Patonay T, Elguero J, . Synthesis of 3-Benzoyl-4-styryl-2-pyrazolines and Their Oxidation to the Corresponding Pyrazoles. European Journal of Organic Chemistry 2000;2000(14):2593-2599. https://doi.org/10.1002/1099-0690(200007)2000:14<2593::aid-ejoc2593>3.0.co;2-y
Kidwai M, Lal M, Mishra N, Jahan A, . Potassium carbonate as a green catalyst for Markovnikov addition of azoles to vinyl acetate in PEG. Green Chemistry Letters and Reviews 2013;6(1):63-68. https://doi.org/10.1080/17518253.2012.704082
DeLucia N, Das N, Vannucci A, . Mild synthesis of silyl ethers via potassium carbonate catalyzed reactions between alcohols and hydrosilanes. Organic & Biomolecular Chemistry 2018;16(18):3415-3418. https://doi.org/10.1039/c8ob00464a
Kidwai M, Venkataramanan R, Dave B, . Potassium carbonate, a support for the green synthesis of azoles and diazines. Journal of Heterocyclic Chemistry 2002;39(5):1045-1047. https://doi.org/10.1002/jhet.5570390530
Shi M, Dai L, Shi Y, Zhao G, . Potassium Carbonate-Catalyzed Reactions of Salicylic Aldehydes with Allenic Ketones and Esters: an Effective Way to Synthesize Functionalized 2H-Chromenes. Advanced Synthesis & Catalysis 2006;348(7-8):967-972. https://doi.org/10.1002/adsc.200505496
Jorapur Y, Jeong J, Chi D. Potassium carbonate as a base for the N-alkylation of indole and pyrrole in ionic liquids. Tetrahedron Letters 2006;47(14):2435-2438. https://doi.org/10.1016/j.tetlet.2006.01.129
Valizadeh H, Gholipur H, Shockravi A, . Microwave assisted synthesis of coumarinsviapotassium carbonate catalyzed knoevenagel condensation in 1-n-butyl-3-methylimidazolium bromide ionic liquid. Journal of Heterocyclic Chemistry 2007;44(4):867-870. https://doi.org/10.1002/jhet.5570440419
Singh S, Chauhan S, . Potassium carbonate catalyzed one pot four-component synthesis of rhodanine derivatives. Tetrahedron Letters 2013;54(20):2484-2488. https://doi.org/10.1016/j.tetlet.2013.03.004
Kidwai M, Venkataramanan R, Dave B. Green Chemistry 2001;3(6):278-279. https://doi.org/10.1039/b106034c
Mondal R, Gupta A, Mallik A, . Synthesis of flavanones by use of anhydrous potassium carbonate as an inexpensive, safe, and efficient basic catalyst. Tetrahedron Letters 2011;52(39):5020-5024. https://doi.org/10.1016/j.tetlet.2011.07.072
Li J, Lin Z, Han J, Li T, . One‐Pot Synthesis of 4‐Oxo‐2‐thioxohexahydropyrimidines Catalyzed by Potassium Carbonate Under Ultrasound. Synthetic Communications 2004;34(14):2623-2631. https://doi.org/10.1081/scc-200025624
Mohammadi S, Ghazanfari D, Karimi-Jaberi Z, . An Efficient, Potassium Carbonate-Catalysed, Three-Component Reaction of Aldehydes, Malononitrile and Amidines Leading to Highly Functionalized Pyrimidines in Aqueous Media. Letters in Organic Chemistry 2020;17(4):281-286. https://doi.org/10.2174/1570178616666190401190207
DATTA B, PASHA M, . I2/K2CO3: An efficient catalyst for the synthesis of 5-aryl-2,6-dicyano-3-methylanilines. Journal of Chemical Sciences 2013;125(2):291-294. https://doi.org/10.1007/s12039-013-0375-0
Downloads
Additional Files
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).