Study of the effectiveness of various cannabinoid receptor 1 (CB1) agonists using molecular docking and molecular dynamics modeling

Volodymyr Tkachenko, Vladimir Farafonov, Viktor Tokarev, Irina Tkachenko

Abstract

The binding of a series of small organic molecules, acting as agonists of the cannabinoid receptor CB1, was investigated by means of three methods of computational chemistry. Binding modes were predicted by means of molecular docking, and binding free energy was estimated via docking, molecular-mechanics Poisson-Boltzmann surface area method, and multistate Bennett acceptance ratio. No evident correlation was observed for the molecules between the experimental characteristics of affinity and three computed binding free energy estimates. The reasons for the discrepancy were discussed.

Keywords

cannabinoid receptor 1; molecular docking; molecular dynamics simulations; agonists; binding energy

Full Text:

PDF

References

Zou S, Kumar U. Cannabinoid Receptors and the Endocannabinoid System: Signaling and Function in the Central Nervous System. International Journal of Molecular Sciences 2018;19(3):833. https://doi.org/10.3390/ijms19030833

Yin A, Wang F, Zhang X. Integrating endocannabinoid signaling in the regulation of anxiety and depression. Acta Pharmacologica Sinica 2018;40(3):336-341. https://doi.org/10.1038/s41401-018-0051-5

Silvestri C, Di Marzo V. The Endocannabinoid System in Energy Homeostasis and the Etiopathology of Metabolic Disorders. Cell Metabolism 2013;17(4):475-490. https://doi.org/10.1016/j.cmet.2013.03.001

Casteels C, Ahmad R, Vandenbulcke M, Vandenberghe W, Van Laere K. Cannabinoids and Huntington’s disease. Cannabinoids in Neurologic and Mental Disease 2015;:61-97. https://doi.org/10.1016/b978-0-12-417041-4.00004-7

Rajah G, Kolb B, Saber H, Fadel H. The endocannabinoid system and stroke: A focused review. Brain Circulation 2019;5(1):1. https://doi.org/10.4103/bc.bc_29_18

Hourani W, Alexander S. Cannabinoid ligands, receptors and enzymes: Pharmacological tools and therapeutic potential. Brain and Neuroscience Advances 2018;2:239821281878390. https://doi.org/10.1177/2398212818783908

Carroll F, Lewin A, Mascarella S, Seltzman H, Reddy P. Designer drugs: a medicinal chemistry perspective. Annals of the New York Academy of Sciences 2011;1248(1):18-38. https://doi.org/10.1111/j.1749-6632.2011.06199.x

Wiley J, Marusich J, Huffman J, Balster R, Thomas B. Hijacking of Basic Research: The Case of Synthetic Cannabinoids. 2011;:. https://doi.org/10.3768/rtipress.2011.op.0007.1111

Cohen K, Weinstein A. Synthetic and Non-synthetic Cannabinoid Drugs and Their Adverse Effects-A Review From Public Health Prospective. Frontiers in Public Health 2018;6:. https://doi.org/10.3389/fpubh.2018.00162

Weinstein A, Rosca P, Fattore L, London E. Synthetic Cathinone and Cannabinoid Designer Drugs Pose a Major Risk for Public Health. Frontiers in Psychiatry 2017;8:. https://doi.org/10.3389/fpsyt.2017.00156

Paulke A, Proschak E, Sommer K, Achenbach J, Wunder C, Toennes S. Synthetic cannabinoids: In silico prediction of the cannabinoid receptor 1 affinity by a quantitative structure-activity relationship model. Toxicology Letters 2016;245:1-6. https://doi.org/10.1016/j.toxlet.2016.01.001

Hua T, Vemuri K, Nikas S, Laprairie R, Wu Y, Qu L, Pu M, Korde A, Jiang S, Ho J, Han G, Ding K, Li X, Liu H, Hanson M, Zhao S, Bohn L, Makriyannis A, Stevens R, Liu Z. Crystal structures of agonist-bound human cannabinoid receptor CB1. Nature 2017;547(7664):468-471. https://doi.org/10.1038/nature23272

Krishna Kumar K, Shalev-Benami M, Robertson M, Hu H, Banister S, Hollingsworth S, Latorraca N, Kato H, Hilger D, Maeda S, Weis W, Farrens D, Dror R, Malhotra S, Kobilka B, Skiniotis G. Structure of a Signaling Cannabinoid Receptor 1-G Protein Complex. Cell 2019;176(3):448-458.e12. https://doi.org/10.1016/j.cell.2018.11.040

Li X, Hua T, Vemuri K, Ho J, Wu Y, Wu L, Popov P, Benchama O, Zvonok N, Locke K, Qu L, Han G, Iyer M, Cinar R, Coffey N, Wang J, Wu M, Katritch V, Zhao S, Kunos G, Bohn L, Makriyannis A, Stevens R, Liu Z. Crystal Structure of the Human Cannabinoid Receptor CB2. Cell 2019;176(3):459-467.e13. https://doi.org/10.1016/j.cell.2018.12.011

Hurst D, Garai S, Kulkarni P, Schaffer P, Reggio P, Thakur G. Identification of CB1 Receptor Allosteric Sites Using Force-Biased MMC Simulated Annealing and Validation by Structure–Activity Relationship Studies. ACS Medicinal Chemistry Letters 2019;10(8):1216-1221. https://doi.org/10.1021/acsmedchemlett.9b00256

Loo J, Emtage A, Murali L, Lee S, Kueh A, Alexander S. Ligand discrimination during virtual screening of the CB1 cannabinoid receptor crystal structures following cross-docking and microsecond molecular dynamics simulations. RSC Advances 2019;9(28):15949-15956. https://doi.org/10.1039/c9ra01095e

Jung S, Cho A, Yu W. Exploring the Ligand Efficacy of Cannabinoid Receptor 1 (CB1) using Molecular Dynamics Simulations. Scientific Reports 2018;8(1):. https://doi.org/10.1038/s41598-018-31749-z

Wang C, Greene D, Xiao L, Qi R, Luo R. Recent Developments and Applications of the MMPBSA Method. Frontiers in Molecular Biosciences 2018;4:. https://doi.org/10.3389/fmolb.2017.00087

Shirts M, Chodera J. Statistically optimal analysis of samples from multiple equilibrium states. The Journal of Chemical Physics 2008;129(12):124105. https://doi.org/10.1063/1.2978177

Williams-Noonan B, Yuriev E, Chalmers D. Free Energy Methods in Drug Design: Prospects of “Alchemical Perturbation” in Medicinal Chemistry. Journal of Medicinal Chemistry 2017;61(3):638-649. https://doi.org/10.1021/acs.jmedchem.7b00681

Molecular Operating Environment (MOE), 2014.09; Chemical Computing Group Inc., 1010 Sherbooke St. West, Suite #910, Montreal, QC, Canada, H3A 2R7, 2014.

Naïm M, Bhat S, Rankin K, Dennis S, Chowdhury S, Siddiqi I, Drabik P, Sulea T, Bayly C, Jakalian A, Purisima E. Solvated Interaction Energy (SIE) for Scoring Protein−Ligand Binding Affinities. 1. Exploring the Parameter Space. Journal of Chemical Information and Modeling 2007;47(1):122-133. https://doi.org/10.1021/ci600406v

Huang J, MacKerell A. CHARMM36 all-atom additive protein force field: Validation based on comparison to NMR data. Journal of Computational Chemistry 2013;34(25):2135-2145. https://doi.org/10.1002/jcc.23354

Vanommeslaeghe K, Hatcher E, Acharya C, Kundu S, Zhong S, Shim J, Darian E, Guvench O, Lopes P, Vorobyov I, Mackerell A. CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. Journal of Computational Chemistry 2009;:NA-NA. https://doi.org/10.1002/jcc.21367

Robertson M, Tirado-Rives J, Jorgensen W. Improved Peptide and Protein Torsional Energetics with the OPLS-AA Force Field. Journal of Chemical Theory and Computation 2015;11(7):3499-3509. https://doi.org/10.1021/acs.jctc.5b00356

Kulig W, Pasenkiewicz-Gierula M, Róg T. Topologies, structures and parameter files for lipid simulations in GROMACS with the OPLS-aa force field: DPPC, POPC, DOPC, PEPC, and cholesterol. Data in Brief 2015;5:333-336. https://doi.org/10.1016/j.dib.2015.09.013

Maciejewski A, Pasenkiewicz-Gierula M, Cramariuc O, Vattulainen I, Rog T. Refined OPLS All-Atom Force Field for Saturated Phosphatidylcholine Bilayers at Full Hydration. The Journal of Physical Chemistry B 2014;118(17):4571-4581. https://doi.org/10.1021/jp5016627

Dodda L, Cabeza de Vaca I, Tirado-Rives J, Jorgensen W. LigParGen web server: an automatic OPLS-AA parameter generator for organic ligands. Nucleic Acids Research 2017;45(W1):W331-W336. https://doi.org/10.1093/nar/gkx312

Kumari R, Kumar R, Lynn A, . g_mmpbsa—A GROMACS Tool for High-Throughput MM-PBSA Calculations. Journal of Chemical Information and Modeling 2014;54(7):1951-1962. https://doi.org/10.1021/ci500020m

Baker N, Sept D, Joseph S, Holst M, McCammon J. Electrostatics of nanosystems: Application to microtubules and the ribosome. Proceedings of the National Academy of Sciences 2001;98(18):10037-10041. https://doi.org/10.1073/pnas.181342398