Hybrid-stabilized silver nanoparticles and their biological impact on hospital infections, healing wounds, and wheat cultivation


  • Tatyana Zheltonozhskaya Taras Shevchenko National University of Kyiv
  • Nataliya Permyakova
  • Tetiana Kondratiuk
  • Tetyana Beregova
  • Valeriy Klepko
  • Bogdan Melnik




polymer/inorganic hybrid, silver nanoparticles, structure, morphology, biological impact


The structure and morphology of new biocide compositions based on silver nanoparticles and silica/polyacrylamide hybrids, as well as their diverse biological effects on traditional hospital infections and wound healing and winter wheat cultivation, were studied. The compositions showed a high bactericidal effect against bacteria of the genera Staphylococcus and Pseudomonas, and fungistatic effect against the yeast genus Candida and filamentous fungi of the genera Aspergillus, Cladosporium, Penicillium, Exophiala, and Fusarium. They also showed high activity in wound healing in rats and significantly changed the rate of development of winter wheat plants due to presowing treatment of seeds.

Author Biography

Tatyana Zheltonozhskaya, Taras Shevchenko National University of Kyiv

Department of Macromolecular Chemistry

Dr. Chem. Sci., Professor


Denyer SP, Hugo WB (Eds.), Mechanisms of action of chemical biocides. Their study and exploitation. Oxford, UK: BLACKWELL SCIENTIFIC PUBLICATIONS; 1991, 346 pp.

Gilbert P, McBain A. Potential Impact of Increased Use of Biocides in Consumer Products on Prevalence of Antibiotic Resistance. Clinical Microbiology Reviews 2003;16(2):189-208. https://doi.org/10.1128/cmr.16.2.189-208.2003

European Commission, Health & Consumer Protection DG, SCENIHR (Scientific Commettee on Emerging and Newly Identified Health Risks), Assessment of the antibiotic resistance effects of biocides, 19 January 2009, 87 pp.

Bobbarala V (Ed.), A search for antibacterial agents. Rijeka, Croatia: INTECH; 2012, 344 pp. https://doi.org/10.5772/1085

Simoncic B, Tomsic B. Structures of Novel Antimicrobial Agents for Textiles - A Review. Textile Research Journal 2010;80(16):1721-1737. https://doi.org/10.1177/0040517510363193

Sakharov SP, Kozlov LB, Ivanov VV, Analysis of the microbial landscape of wound infection with severe thermal injury in children. Fundamental Res. 2013; 9(3):468-471 (in Russian).

Hoog GS de, Guarro J, Atlas of clinical fungi. Utrecht, The Netherlands: Electronic Version 3.1, 2011 (www. clinicalfungi.org).

Huh A, Kwon Y. “Nanoantibiotics”: A new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. Journal of Controlled Release 2011;156(2):128-145. https://doi.org/10.1016/j.jconrel.2011.07.002

Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnology Advances 2009;27(1):76-83. https://doi.org/10.1016/j.biotechadv.2008.09.002

Domènech B, Muñoz M, Muraviev DN, Macanás J, Polymer-silver nanocomposites as antibacterial materials. In: Méndez-Vilas A, editor. Microbial pathogens and strategies for combating them: science, technology and education. Badajoz: Formatex; 2013, p. 630-640.

Murphy M, Ting K, Zhang X, Soo C, Zheng Z. Current Development of Silver Nanoparticle Preparation, Investigation, and Application in the Field of Medicine. Journal of Nanomaterials 2015;2015:1-12. https://doi.org/10.1155/2015/696918

Ravishankar RV, Jamuna BA, Nanoparticles and their potential application as antimicrobials. In: Méndez-Vilas A, editor. Science against microbial pathogens: communicating current research and technological advances. Badajoz: Formatex; 2011, p. 197-209.

Morales-Díaz A, Ortega-Ortíz H, Juárez-Maldonado A, Cadenas-Pliego G, González-Morales S, Benavides-Mendoza A. Application of nanoelements in plant nutrition and its impact in ecosystems. Advances in Natural Sciences: Nanoscience and Nanotechnology 2017;8(1):013001. https://doi.org/10.1088/2043-6254/8/1/013001

Rastogi A, Zivcak M, Sytar O, Kalaji H, He X, Mbarki S, Brestic M. Impact of Metal and Metal Oxide Nanoparticles on Plant: A Critical Review. Frontiers in Chemistry 2017;5:Art.78. https://doi.org/10.3389/fchem.2017.00078

Siddiqui M, Al-Whaibi M, Firoz M, Al-Khaishany M. Role of Nanoparticles in Plants. Nanotechnology and Plant Sciences 2015;:19-35. https://doi.org/10.1007/978-3-319-14502-0_2

Pulit-Prociak J, Banach M. Silver nanoparticles – a material of the future…?. Open Chemistry 2016;14(1):76-91. https://doi.org/10.1515/chem-2016-0005

Tran Q, Nguyen V, Le A. Silver nanoparticles: synthesis, properties, toxicology, applications and perspectives. Advances in Natural Sciences: Nanoscience and Nanotechnology 2013;4(3):033001. https://doi.org/10.1088/2043-6262/4/3/033001

Korbekandi H, Iravani S. Silver Nanoparticles. The Delivery of Nanoparticles 2012;:3-36. https://doi.org/10.5772/34157

Reidy B, Haase A, Luch A, Dawson K, Lynch I. Mechanisms of Silver Nanoparticle Release, Transformation and Toxicity: A Critical Review of Current Knowledge and Recommendations for Future Studies and Applications. Materials 2013;6(6):2295-2350. https://doi.org/10.3390/ma6062295

Kumar C, Nanomaterials - toxicity, health and environmental issues. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co; 2006; Vol. 5.

AshaRani P, Hande M, Valiyaveettil S. Anti-proliferative activity of silver nanoparticles. BMC Cell Biology 2009;10(1):65. https://doi.org/10.1186/1471-2121-10-65

Morones J, Elechiguerra J, Camacho A, Holt K, Kouri J, Ramírez J, Yacaman M. The bactericidal effect of silver nanoparticles. Nanotechnology 2005;16(10):2346-2353. https://doi.org/10.1088/0957-4484/16/10/059

Pratsinis A, Hervella P, Leroux J, Pratsinis S, Sotiriou G. Toxicity of Silver Nanoparticles in Macrophages. Small 2013;9(15):2576-2584. https://doi.org/10.1002/smll.201202120

Foldbjerg R, Olesen P, Hougaard M, Dang D, Hoffmann H, Autrup H. PVP-coated silver nanoparticles and silver ions induce reactive oxygen species, apoptosis and necrosis in THP-1 monocytes. Toxicology Letters 2009;190(2):156-162. https://doi.org/10.1016/j.toxlet.2009.07.009

Medina C, Santos-Martinez M, Radomski A, Corrigan O, Radomski M. Nanoparticles: pharmacological and toxicological significance. British Journal of Pharmacology 2009;150(5):552-558. https://doi.org/10.1038/sj.bjp.0707130

Park M, Neigh A, Vermeulen J, de la Fonteyne L, Verharen H, Briedé J, van Loveren H, de Jong W. The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles. Biomaterials 2011;32(36):9810-9817. https://doi.org/10.1016/j.biomaterials.2011.08.085

Kim T, Kim M, Park H, Shin U, Gong M, Kim H. Size-dependent cellular toxicity of silver nanoparticles. Journal of Biomedical Materials Research Part A 2012;100A(4):1033-1043. https://doi.org/10.1002/jbm.a.34053

Greulich C, Diendorf J, Simon T, Eggeler G, Epple M, Köller M. Uptake and intracellular distribution of silver nanoparticles in human mesenchymal stem cells. Acta Biomaterialia 2011;7(1):347-354. https://doi.org/10.1016/j.actbio.2010.08.003

Kennedy D, Orts-Gil G, Lai C, Müller L, Haase A, Luch A, Seeberger P. Carbohydrate functionalization of silver nanoparticles modulates cytotoxicity and cellular uptake. Journal of Nanobiotechnology 2014;12(1):59. https://doi.org/10.1186/s12951-014-0059-z

Wen Y, Geitner N, Chen R, Ding F, Chen P, Andorfer R, Govindan P, Ke P. Binding of cytoskeletal proteins with silver nanoparticles. RSC Advances 2013;3(44):22002. https://doi.org/10.1039/c3ra43281e

Li Y, Bhalli J, Ding W, Yan J, Pearce M, Sadiq R, Cunningham C, Jones M, Monroe W, Howard P, Zhou T, Chen T. Cytotoxicity and genotoxicity assessment of silver nanoparticles in mouse. Nanotoxicology 2013;8(sup1):36-45. https://doi.org/10.3109/17435390.2013.855827

Fedorchuk S, Zheltonozhskaya T, Gomza Y, Nessin S, Kunitskaya L, Demchenko O. Syntheses of Silver Nanoparticles in the Matrices of Block and Graft Copolymers and Polymer-Inorganic Hybrid in Aqueous Solutions. Macromolecular Symposia 2012;317-318(1):103-116. https://doi.org/10.1002/masy.201100098

Sojka R, Bjorneberg D, Entry J, Lentz R, Orts W. Polyacrylamide in Agriculture and Environmental Land Management. Advances in Agronomy 2007;:75-162. https://doi.org/10.1016/s0065-2113(04)92002-0

Kaliammal P, Rosemary MJ, Khadar A, Synthesis, characterization and application of polymer protected silver and silver iodide nanoparticles. Indian J. Nanotechnol. Appl. 2013;1(1):49-60

Islam MS, Molla MAI, Sarker M, Karim MM, Masum SM, Yeum JH, Fabrication of pllulan/silver nanoparticle composite nanospheres using electrospray technique for antibacterial applications. Int. J. Basic & Appl. Sci. 2011;11(1):36-40

Ghosh S, Ranebennur T, Vasan H. Study of Antibacterial Efficacy of Hybrid Chitosan-Silver Nanoparticles for Prevention of Specific Biofilm and Water Purification. International Journal of Carbohydrate Chemistry 2011;2011:1-11. https://doi.org/10.1155/2011/693759

Palza H. Antimicrobial Polymers with Metal Nanoparticles. International Journal of Molecular Sciences 2015;16(1):2099-2116. https://doi.org/10.3390/ijms16012099

Damm C, Münstedt H, Rösch A. Long-term antimicrobial polyamide 6/silver-nanocomposites. Journal of Materials Science 2007;42(15):6067-6073. https://doi.org/10.1007/s10853-006-1158-5

Frolov YuG, Dvoretskaya GA, Tarasov SB, Determination of thermodynamic parameters of silica sol by light scattering method. Colloid J. 1984;46(5):971-975 (in Russian)

Iler RK. The chemistry of silica: solubility, polymerization, colloid and surface properties and biochemistry of silica. Wiley-Interscience; 1979, 896 pp.

Abramova LI, Beiburdov TA, Grigoryan EP. Polyacrylamide. Moskow: Chemistry; 1992, 189 pp. (in Russian)

Xiong B, Loss R, Shields D, Pawlik T, Hochreiter R, Zydney A, Kumar M. Polyacrylamide degradation and its implications in environmental systems. npj Clean Water 2018;1(1):17. https://doi.org/10.1038/s41545-018-0016-8

Chemical encyclopedia. V.3. Zolotov YuA editor. Moskow: Scientific edition “Great Russian encyclopedia”; 1992, p.601 (in Russian)

Maltseva NN, Hain VS, Sodium borohydride: properties and application. Moscow: NAUKA; 1985, 207 pp (in Russian)

Lipatov YuS, Shilov VV, Gomza YuP, Kruglyak NE, X-Ray diffraction methods for studying polymer systems. Kyiv: Nauk. Dumka; 1982, 296 pp (in Russian)

Kondratyuk T, Kondratyuk S, Morgaienko O, Khimich M, Beregova T, Ostapchenko L. Pseudonadsoniella brunnea (Meripilaceae, Agaricomycotina), a new brown yeast-like fungus producing melanin from the Antarctic; with notes on nomenclature and type confusion of Nadsoniella nigra. Acta Botanica Hungarica 2015;57(3-4):291-320. https://doi.org/10.1556/034.57.2015.3-4.5

Schweitzer A, Howell R, Jiang Z, Bryan R, Gerfen G, Chen C, Mah D, Cahill S, Casadevall A, Dadachova E. Physico-Chemical Evaluation of Rationally Designed Melanins as Novel Nature-Inspired Radioprotectors. PLoS ONE 2009;4(9):e7229. https://doi.org/10.1371/journal.pone.0007229

Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 as to protection of animals used for scientific purposes (2010) Special edition in Croatian. Chapter 15, 028: pp. 82–128, http://data.europa.eu/eli/dir/2010/63/oj.

Evanoff D, Chumanov G. Synthesis and Optical Properties of Silver Nanoparticles and Arrays. ChemPhysChem 2005;6(7):1221-1231. https://doi.org/10.1002/cphc.200500113

Kelly K, Coronado E, Zhao L, Schatz G. The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment. The Journal of Physical Chemistry B 2003;107(3):668-677. https://doi.org/10.1021/jp026731y

Becturov EА, Kudaybergenov SЕ, Garmagambetova АК, Iskakov RM, Ibraeva JЕ, Shmakov SN, Polymer-protected metal nanoparticles. Almaty; 2010, 274 pp

Zheltonozhskaya T, Permyakova N, Momot L. INTRAMOLECULAR POLYCOMPLEXES IN BLOCK AND GRAFT COPOLYMERS. Hydrogen-Bonded Interpolymer Complexes 2009;:85-154. https://doi.org/10.1142/9789812709776_0005

Zheltonozhskaya T, Permyakova N, Eremenko B. INTER- AND INTRAMOLECULAR POLYCOMPLEXES IN POLYDISPERSED COLLOIDAL SYSTEMS. Hydrogen-Bonded Interpolymer Complexes 2009;:201-234. https://doi.org/10.1142/9789812709776_0008

Huang Y, Peng Y, Li X, Liu X, Luo Q. A randomized comparative trial between Acticoat and SD-AG in the treatment of residual burn wounds, including safety analysis. Burns 2007;33(1):S12. https://doi.org/10.1016/j.burns.2006.10.032

Chen J, Han CM, Lin XW, Tang ZJ, Su SJ, Effect of silver nanoparticle dressing on second degree burn wound. Zhonghua Wai Ke Za Zhi. 2006;44(1):50–52 (in Chinese)

Kole C, Kumar DS (Eds), Plant nanotechnology: principles and practices. Switzerland: SPRINGER; 2016, 383 pp. https://doi.org/10.1007/978-3-319-42154-4

FAROOQUI A, TABASSUM H, AHMAD A, MABOOD A, AHMAD A, ZAREEEN AHMAD I. Role of nanoparticles in growth and development ofplants: a review. International Journal of Pharma and Bio Sciences 2016;7(4):. https://doi.org/10.22376/ijpbs.2016.7.4.p22-37

Arif N, Yadav V, Singh S, Singh S, Ahmad P, Mishra R, Sharma S, Tripathi D, Dubey N, Chauhan D. Influence of High and Low Levels of Plant-Beneficial Heavy Metal Ions on Plant Growth and Development. Frontiers in Environmental Science 2016;4:. https://doi.org/10.3389/fenvs.2016.00069