Kinetic study of carbon dioxide catalytic methanation over cobalt–nickel catalysts

Alla G. Dyachenko, Olena V. Ischenko, Snizhana V. Gaidai, Tetiana M. Zakharova, Andrii V. Yatsymyrskyi, Vladyslav V. Lisnyak


Based on the data of the thermoprogrammed desorption and using mass-spectroscopic analysis of desorbed products and on the kinetic patterns of the methanation process for cobalt–nickel catalysts, we suggested a mechanism for the reaction which passes through forming intermediate formyl compounds: CHO*, HCOH*, and HCOOH*. Because of the high stability of the carbon dioxide molecule, the step of adding the first hydrogen atom is the limiting step. Such a mechanism is in good agreement with the proposed kinetic equations.


Sabatier process; bimetallic catalysts; catalytic methanation of CO2; kinetic patterns

Full Text:



Petipas F. Conception et conduite de systèmes d’électrolyse à haute température alimentés par des énergies renouvelables. Paris: MINES ParisTech; 2013, p. 180.

De Saint Jean M, Baurens P, Bouallou C, Couturier K. Economic assessment of a power-to-substitute-natural-gas process including high-temperature steam electrolysis. International Journal of Hydrogen Energy 2015;40(20):6487-6500.

Rönsch S, Schneider J, Matthischke S, Schlüter M, Götz M, Lefebvre J, Prabhakaran P, Bajohr S. Review on methanation – From fundamentals to current projects. Fuel 2016;166:276-296.

Sherif SA, Yogi Goswami D, (Lee) Stefanakos EK, Steinfeld A. Handbook of Hydrogen Energy. Boca Raton: CRC Press; 2014, p. 1058.

Guerra L, Rossi S, Rodrigues J, Gomes J, Puna J, Santos M. Methane production by a combined Sabatier reaction/water electrolysis process. Journal of Environmental Chemical Engineering 2018;6(1):671-676.

Prieto G. Carbon Dioxide Hydrogenation into Higher Hydrocarbons and Oxygenates: Thermodynamic and Kinetic Bounds and Progress with Heterogeneous and Homogeneous Catalysis. ChemSusChem 2017;10(6):1056-1070.

Miguel C, Soria M, Mendes A, Madeira L. Direct CO2 hydrogenation to methane or methanol from post-combustion exhaust streams – A thermodynamic study. Journal of Natural Gas Science and Engineering 2015;22:1-8.

Swapnesh A, Srivastava V, Mall I. Comparative Study on Thermodynamic Analysis of CO2Utilization Reactions. Chemical Engineering & Technology 2014;37(10):1765-1777.

Meshkini Far R, Ischenko O, Dyachenko A, Bieda O, Gaidai S, Lisnyak V. CO2 hydrogenation into CH4 over Ni–Fe catalysts. Functional Materials Letters 2018;11(03):1850057.

Zhludenko M, Dyachenko A, Bieda O, Gaidai S, Filonenko M, Ischenko O. Structure and Catalytic Properties of Co-Fe Systems in the Reaction of CO2 Methanation. Acta Physica Polonica A 2018;133(4):1084-1087.

Su X, Xu J, Liang B, Duan H, Hou B, Huang Y. Catalytic carbon dioxide hydrogenation to methane: A review of recent studies. Journal of Energy Chemistry 2016;25(4):553-565.

Agnelli M, Kolb M, Mirodatos C. Co Hydrogenation on a Nickel Catalyst .. Journal of Catalysis 1994;148(1):9-21.

Aziz M, Jalil A, Triwahyono S, Ahmad A. CO2 methanation over heterogeneous catalysts: recent progress and future prospects. Green Chemistry 2015;17(5):2647-2663.

Kustov L, Tarasov A. Hydrogenation of carbon dioxide: a comparison of different types of active catalysts. Mendeleev Communications 2014;24(6):349-350.

Alrafei B, Polaert I, Ledoux A, Azzolina-Jury F. Remarkably stable and efficient Ni and Ni-Co catalysts for CO2 methanation. Catalysis Today 2019;:.

Martínez J, Hernández E, Alfaro S, López Medina R, Valverde Aguilar G, Albiter E, Valenzuela M. High Selectivity and Stability of Nickel Catalysts for CO2 Methanation: Support Effects. Catalysts 2018;9(1):24.

Miao B, Ma S, Wang X, Su H, Chan S. Catalysis mechanisms of CO2 and CO methanation. Catalysis Science & Technology 2016;6(12):4048-4058.

Baraj E, Vagaský S, Hlinčik T, Ciahotný K, Tekáč V. Reaction mechanisms of carbon dioxide methanation. Chemical Papers 2016;70(4):.

Ishchenko EV, Boldyreva NA, Tsapyuk GG, Yatsimirskii AV. State of carbon monoxide adsorbed on the surface of Pd, Pd-Ag, and Ag catalysts deposited on Al2O3. Russ J Phys Chem 2000;74:S541-543.

Kwak J, Kovarik L, Szanyi J. Heterogeneous Catalysis on Atomically Dispersed Supported Metals: CO2 Reduction on Multifunctional Pd Catalysts. ACS Catalysis 2013;3(9):2094-2100.