Kinetic study of carbon dioxide catalytic methanation over cobalt–nickel catalysts

Alla G. Dyachenko, Olena V. Ischenko, Snizhana V. Gaidai, Tetiana M. Zakharova, Andrii V. Yatsymyrskyi, Vladyslav V. Lisnyak

Abstract


Based on the data of the thermoprogrammed desorption and using mass-spectroscopic analysis of desorbed products and on the kinetic patterns of the methanation process for cobalt–nickel catalysts, we suggested a mechanism for the reaction which passes through forming intermediate formyl compounds: CHO*, HCOH*, and HCOOH*. Because of the high stability of the carbon dioxide molecule, the step of adding the first hydrogen atom is the limiting step. Such a mechanism is in good agreement with the proposed kinetic equations.


Keywords


Sabatier process; bimetallic catalysts; catalytic methanation of CO2; kinetic patterns

Full Text:

PDF

References


Petipas F. Conception et conduite de systèmes d’électrolyse à haute température alimentés par des énergies renouvelables. Paris: MINES ParisTech; 2013, p. 180.

De Saint Jean M, Baurens P, Bouallou C, Couturier K. Economic assessment of a power-to-substitute-natural-gas process including high-temperature steam electrolysis. International Journal of Hydrogen Energy 2015;40(20):6487-6500. https://doi.org/10.1016/j.ijhydene.2015.03.066

Rönsch S, Schneider J, Matthischke S, Schlüter M, Götz M, Lefebvre J, Prabhakaran P, Bajohr S. Review on methanation – From fundamentals to current projects. Fuel 2016;166:276-296. https://doi.org/10.1016/j.fuel.2015.10.111

Sherif SA, Yogi Goswami D, (Lee) Stefanakos EK, Steinfeld A. Handbook of Hydrogen Energy. Boca Raton: CRC Press; 2014, p. 1058.

Guerra L, Rossi S, Rodrigues J, Gomes J, Puna J, Santos M. Methane production by a combined Sabatier reaction/water electrolysis process. Journal of Environmental Chemical Engineering 2018;6(1):671-676. https://doi.org/10.1016/j.jece.2017.12.066

Prieto G. Carbon Dioxide Hydrogenation into Higher Hydrocarbons and Oxygenates: Thermodynamic and Kinetic Bounds and Progress with Heterogeneous and Homogeneous Catalysis. ChemSusChem 2017;10(6):1056-1070. https://doi.org/10.1002/cssc.201601591

Miguel C, Soria M, Mendes A, Madeira L. Direct CO2 hydrogenation to methane or methanol from post-combustion exhaust streams – A thermodynamic study. Journal of Natural Gas Science and Engineering 2015;22:1-8. https://doi.org/10.1016/j.jngse.2014.11.010

Swapnesh A, Srivastava V, Mall I. Comparative Study on Thermodynamic Analysis of CO2Utilization Reactions. Chemical Engineering & Technology 2014;37(10):1765-1777. https://doi.org/10.1002/ceat.201400157

Meshkini Far R, Ischenko O, Dyachenko A, Bieda O, Gaidai S, Lisnyak V. CO2 hydrogenation into CH4 over Ni–Fe catalysts. Functional Materials Letters 2018;11(03):1850057. https://doi.org/10.1142/s1793604718500571

Zhludenko M, Dyachenko A, Bieda O, Gaidai S, Filonenko M, Ischenko O. Structure and Catalytic Properties of Co-Fe Systems in the Reaction of CO2 Methanation. Acta Physica Polonica A 2018;133(4):1084-1087. https://doi.org/10.12693/aphyspola.133.1084

Su X, Xu J, Liang B, Duan H, Hou B, Huang Y. Catalytic carbon dioxide hydrogenation to methane: A review of recent studies. Journal of Energy Chemistry 2016;25(4):553-565. https://doi.org/10.1016/j.jechem.2016.03.009

Agnelli M, Kolb M, Mirodatos C. Co Hydrogenation on a Nickel Catalyst .. Journal of Catalysis 1994;148(1):9-21. https://doi.org/10.1006/jcat.1994.1180

Aziz M, Jalil A, Triwahyono S, Ahmad A. CO2 methanation over heterogeneous catalysts: recent progress and future prospects. Green Chemistry 2015;17(5):2647-2663. https://doi.org/10.1039/c5gc00119f

Kustov L, Tarasov A. Hydrogenation of carbon dioxide: a comparison of different types of active catalysts. Mendeleev Communications 2014;24(6):349-350. https://doi.org/10.1016/j.mencom.2014.11.012

Alrafei B, Polaert I, Ledoux A, Azzolina-Jury F. Remarkably stable and efficient Ni and Ni-Co catalysts for CO2 methanation. Catalysis Today 2019;:. https://doi.org/10.1016/j.cattod.2019.03.026

Martínez J, Hernández E, Alfaro S, López Medina R, Valverde Aguilar G, Albiter E, Valenzuela M. High Selectivity and Stability of Nickel Catalysts for CO2 Methanation: Support Effects. Catalysts 2018;9(1):24. https://doi.org/10.3390/catal9010024

Miao B, Ma S, Wang X, Su H, Chan S. Catalysis mechanisms of CO2 and CO methanation. Catalysis Science & Technology 2016;6(12):4048-4058. https://doi.org/10.1039/c6cy00478d

Baraj E, Vagaský S, Hlinčik T, Ciahotný K, Tekáč V. Reaction mechanisms of carbon dioxide methanation. Chemical Papers 2016;70(4):. https://doi.org/10.1515/chempap-2015-0216

Ishchenko EV, Boldyreva NA, Tsapyuk GG, Yatsimirskii AV. State of carbon monoxide adsorbed on the surface of Pd, Pd-Ag, and Ag catalysts deposited on Al2O3. Russ J Phys Chem 2000;74:S541-543.

Kwak J, Kovarik L, Szanyi J. Heterogeneous Catalysis on Atomically Dispersed Supported Metals: CO2 Reduction on Multifunctional Pd Catalysts. ACS Catalysis 2013;3(9):2094-2100. https://doi.org/10.1021/cs4001392




DOI: https://doi.org/10.17721/fujcV7I1P74-80

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

ISSN 2312-3222 (Online)

Creative Commons License
 French-Ukrainian Journal of Chemistry is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2013 French-Ukrainian Journal of Chemistry