UV-curable hybrid organic-inorganic membranes for the use as PEM in fuel cell

Oksana Demchyna, Khrystyna Rymsha, Mariia Zhyhailo, Iryna Yevchuk, Viktoria Kochubei


The series of membranes were prepared by UV-initiated polymerization of acrylic monomers (acrylonitrile AN, acrylic acid AA and potassium 3-sulfopropylacrylate SPAK) at the presence of photoinitiator (2,2-dimethoxy-2-phenylacetophenone (DMPA)) and cross-linker ethyleneglycole dimethacrylate (EGDMA), and simultaneous sol-gel process in TEOS-based sol-gel system. Characterization of the obtained nanocomposites includes measurements of proton conductivity, thermal behaviuor, water/methanol uptake, free surface energy. The synthesized membranes have high proton conductivity (10-2 Sm/cm) and other properties allowing to consider them as promising candidates for fuel cell application.


fuel cell; proton exchange membrane; proton conductivity; organic-inorganic; hybrid nanocomposite

Full Text:



Olabi A. Energy quadrilemma and the future of renewable energy. Energy 2016;108:1-6. https://doi.org/10.1016/j.energy.2016.07.145

Smitha B, Sridhar S, Khan A. Solid polymer electrolyte membranes for fuel cell applications—a review. Journal of Membrane Science 2005;259(1-2):10-26. https://doi.org/10.1016/j.memsci.2005.01.035

Shamim S, Sudhakar K, Choudhary B. A review on recent advances in proton exchange membrane fuel cells: materials, technology and applications. Adv App Sci Research, 2015;6(9):89-100.

Kickelbick G. Hybrid materials: synthesis, characterization and applications, Weinheim: Wiley – VCH; 2007, pp. 1-516.

Ogungbemi E, Ijaodola O, Khatib F, Wilberforce T, El Hassan Z, Thompson J, Ramadan M, Olabi A. Fuel cell membranes – Pros and cons. Energy 2019;172:155-172. https://doi.org/10.1016/j.energy.2019.01.034

Cheik Ibrahim A, Meyer M, Devautour-Vinot S, Habas J, Clément S, Naoufal D, Mehdi A. A facile synthesis of proton-conducting organic–inorganic membranes. Journal of Membrane Science 2014;470:189-196. https://doi.org/10.1016/j.memsci.2014.07.012

Fu R, Woo J, Seo S, Lee J, Moon S. Covalent organic/inorganic hybrid proton-conductive membrane with semi-interpenetrating polymer network: Preparation and characterizations. Journal of Power Sources 2008;179(2):458-466. https://doi.org/10.1016/j.jpowsour.2007.12.118

Zhu H, Jones D, Zajac J, Dutartre R, Rhomari M, Rozière J. Synthesis of Periodic Large Mesoporous Organosilicas and Functionalization by Incorporation of Ligands into the Framework Wall. Chemistry of Materials 2002;14(12):4886-4894. https://doi.org/10.1021/cm011742+

Diao H, Yan F, Qiu L, Lu J, Lu X, Lin B, Li Q, Shang S, Liu W, Liu J. High Performance Cross-Linked Poly(2-acrylamido-2-methylpropanesulfonic acid)-Based Proton Exchange Membranes for Fuel Cells. Macromolecules 2010;43(15):6398-6405. https://doi.org/10.1021/ma1010099

Yaroslavtsev A, Dobrovolsky Y, Shaglaeva N, Frolova L, Gerasimova E, Sanginov E. Nanostructured materials for low-temperature fuel cells. Russian Chemical Reviews 2012;81(3):191-220. https://doi.org/10.1070/rc2012v081n03abeh004290

Demydova Kh, Horechyy A, Yevchuk I, Demchyna O. The Influence of the Hydrophobic Component Content on the Properties of Hybrid Polymer-Inorganic Membranes. Chemistry & Chemical Technology 2018;12(1):58-63. https://doi.org/10.23939/chcht12.01.058

Famulyak Y, Demchyna B, Demchyna K. Investigation of bearing capacity and deformability of bent wood-concrete beams. Vìsnik L’vìvs’kogo nacìonal’nogo agrarnogo unìversitetu. Arhìtektura ì sìl’s’kogospodars’ke budìvnictvo 2018;19:61-69. https://doi.org/10.31734/architecture2018.19.061

Bongiovanni R, Sangermano M, Malucelli G, Priola A. UV curing of photoinitiator-free systems containing bismaleimides and diacrylate resins: bulk and surface properties. Progress in Organic Coatings 2005;53(1):46-49. https://doi.org/10.1016/j.porgcoat.2004.11.009

Tominaga Y, Hong I, Asai S, Sumita M. Proton conduction in Nafion composite membranes filled with mesoporous silica. Journal of Power Sources 2007;171(2):530-534. https://doi.org/10.1016/j.jpowsour.2007.06.007