Thermochemical properties and glass forming tendency modeling for the ternary Ge–Mn–Gd melts

Natalia Kotova, Natalia Usenko, Natalia Golovata

Abstract

Information on the thermochemical properties may be useful for predicting of the concentration regions of easy glass formation in multicomponent alloys. In present investigation the integral enthalpies of mixing for the Ge–Mn–Gd melts were determined for the entire concentration interval at 1830 K using the Redlich-Kister-Muggianu method. GFT values for binary and ternary alloys of this system were calculated. Size mismatch entropy was estimated within the frameworks of hard spheres model. On the basis of performed calculations the concentration regions in which the melts of the Ge–Mn–Gd system can demonstrate considerable tendency to easy glass formation were suggested.

Keywords

germanium; manganese; gadolinium; enthalpy of mixing; glass forming tendency

Full Text:

PDF

References

Morozkin A, Seropegin Y, Sviridov I. Crystallographic data of new ternary TiNiSi (Co2Si)-type RMnGe (R=Sm, Gd, Dy–Tm) compounds. Journal of Alloys and Compounds 1998;269(1-2):L1-L5. https://doi.org/10.1016/s0925-8388(98)00216-3

Narasimhan K, Rao V, Bergner R, Wallace W. Magnetic properties ofRMn2Ge2compounds (R=La, Ce, Pr, Nd, Cd, Tb, Dy, Ho, Er, and Th). Journal of Applied Physics 1975;46(11):4957-4960. https://doi.org/10.1063/1.321480

Kobayashi H, Onodera H, Yamamoto H. Magnetic properties of single crystal GdMn2Ge2 in high magnetic field. Journal of Magnetism and Magnetic Materials 1989;79(1):76-80. https://doi.org/10.1016/0304-8853(89)90294-1

Szytuła A, Wawrzyńska E, Penc B, Stüsser N, Tomkowicz Z, Zygmunt A. Magnetic properties and electronic structure of R3T4X4 (R: La–Nd, Gd–Er; T: Mn, Cu; X: Ge, Sn) compounds. Journal of Alloys and Compounds 2004;367(1-2):224-229. https://doi.org/10.1016/j.jallcom.2003.08.042

Duijn H, Brück E, Buschow K, de Boer F. Electrical resistivity of RMn6Ge6 (R = rare earth) compounds. Journal of Magnetism and Magnetic Materials 1999;196-197:691-693. https://doi.org/10.1016/s0304-8853(98)00896-8

Zhong X, Min J, Zheng Z, Liu Z, Zeng D. Critical behavior and magnetocaloric effect of Gd65Mn35−xGex (x = 0, 5, and 10) melt-spun ribbons. Journal of Applied Physics 2012;112(3):033903. https://doi.org/10.1063/1.4740062

Kanibolotsky D, Kotova N, Bieloborodova O, Lisnyak V. High temperature calorimetric examination of enthalpies of mixing in liquid (gadolinium–germanium–manganese) alloys. The Journal of Chemical Thermodynamics 2006;38(7):849-860. https://doi.org/10.1016/j.jct.2005.09.002

Ivanov M, Berezutski V, Usenko N. Mixing enthalpies in liquid alloys of manganese with the lanthanides. International Journal of Materials Research 2011;102(3):277-281. https://doi.org/10.3139/146.110474

Wang J, Lin S, Rong M, Rao G, Zhou H. Experimental investigation and thermodynamic re-assessment of the Mn–Gd binary system. Journal of Thermal Analysis and Calorimetry 2016;128(2):1009-1018. https://doi.org/10.1007/s10973-016-6000-y

Berche A, Tedenac J, Jund P. Thermodynamic modeling of the germanium–manganese system. Intermetallics 2014;47:23-30. https://doi.org/10.1016/j.intermet.2013.12.009

Geld PV, Petrushevsky MS, Yesin YuO, Gorbunov YuV. Jental'pii obrazovanija i struktura blizhnego porjadka zhidkih splavov marganca s kremniem, germaniem i olovom. Dokl. Akad. Nauk SSSR. 1974; 217: 1114-1117.

Kanibolotsky D, Golovataya N, Bieloborodova O, Lisnyak V. High temperature calorimetric study of liquid (gallium–gadolinium–germanium) alloys. The Journal of Chemical Thermodynamics 2005;37(2):117-129. https://doi.org/10.1016/j.jct.2004.08.008

Okamoto H. Gd-Ge (Gadolinium-Germanium). Journal of Phase Equilibria and Diffusion 2012;33(2):163-163. https://doi.org/10.1007/s11669-012-9996-0

Kim J, Jung I. Thermodynamic modelling of Mn-Y and Mn-Gd systems for application of RE in Mg alloy development. Canadian Metallurgical Quarterly 2013;52(3):311-320. https://doi.org/10.1179/1879139513y.0000000079

Kim Y, Soh J, Kim H, Lee H. Thermodynamic prediction of glass forming range in Al-Mg-REM ternary system. Calphad 1998;22(2):221-230. https://doi.org/10.1016/s0364-5916(98)00025-x

Turchanin A, Turchanin M, Agraval P. Thermodynamics of Undercooled Liquid and Amorphous Binary metallic Alloys. Journal of Metastable and Nanocrystalline Materials 2001;10:481-486. https://doi.org/10.4028/www.scientific.net/jmnm.10.481

Zielinski PG, Matyja H. Influence of liquid structure on glass forming Tendency. Paper presented at: Rapidly Quenched Metals Sec. Int. Conf.; Cambridge, MIT Press, 1975. p. 237-248

Witusiewicz V. Thermodynamic properties of liquid alloys of 3d transition metals with metalloids (silicon, carbon and boron). Journal of Alloys and Compounds 1994;203:103-116. https://doi.org/10.1016/0925-8388(94)90720-x

Witusiewicz V. Thermodynamics of binary and ternary melts of the 3d transition metals (Cr, Mn, Fe, Co and Ni) with boron. Thermochimica Acta 1995;264:41-58. https://doi.org/10.1016/0040-6031(95)02345-3

Markіv VJa, Bіloborodova OA, Beljavіna NM, Aleksєєva NV. Іzotermіchnij pererіz dіagrami stanu sistemi Ge-Mn-Gd pri 700oS. Dopovіdі AN Ukraїni. 1993; 7: 70-73.

Ostrovskij OI, Grigorjan VA, Vishkarev AF. Stroenie metallicheskih rasplavov. Moskva: Metallurgija; 1988.

Mansoori G, Carnahan N, Starling K, Leland T. Equilibrium Thermodynamic Properties of the Mixture of Hard Spheres. The Journal of Chemical Physics 1971;54(4):1523-1525. https://doi.org/10.1063/1.1675048

Singh P, Khanna K. Entropy of mixing calculations for compound forming liquid alloys in the hard sphere system. Physica B+C 1984;124(3):369-374. https://doi.org/10.1016/0378-4363(84)90093-7

Takeuchi A, Inoue A. Calculations of Mixing Enthalpy and Mismatch Entropy for Ternary Amorphous Alloys. Materials Transactions, JIM 2000;41(11):1372-1378. https://doi.org/10.2320/matertrans1989.41.1372