Investigation of Hydrogen Production by using Zinc Coated Platinum Electrode in Phosphate Solutions
Abstract
Keywords
Full Text:
PDFReferences
Li Y, Song J, Yang J. Graphene models and nano-scale characterization technologies for fuel cell vehicle electrodes. Renewable and Sustainable Energy Reviews 2015;42:66-77. https://doi.org/10.1016/j.rser.2014.10.005
Zerta M, Schmidt P, Stiller C, Landinger H. Alternative World Energy Outlook (AWEO) and the role of hydrogen in a changing energy landscape. International Journal of Hydrogen Energy 2008;33(12):3021-3025. https://doi.org/10.1016/j.ijhydene.2008.01.044
Erbil M. Corrosion-Principles-Precautions, Ankara: Corrosion Soc Publication; 2012.
Leckie H, Uhlig H. Environmental Factors Affecting the Critical Potential for Pitting in 18–8 Stainless Steel. Journal of The Electrochemical Society 1966;113(12):1262. https://doi.org/10.1149/1.2423801
Ibrahim S. Hydrogen storage in proton-conductive perovskite-type oxides and their application. Korean Journal of Chemical Engineering 2014;31(10):1792-1797. https://doi.org/10.1007/s11814-014-0081-8
MURADOV N, VEZIROGLU T. “Green” path from fossil-based to hydrogen economy: An overview of carbon-neutral technologies. International Journal of Hydrogen Energy 2008;33(23):6804-6839. https://doi.org/10.1016/j.ijhydene.2008.08.054
Yadav J, Park J, Cho Y, Joo O. Intermediate hydroxide enforced electrodeposited platinum film for hydrogen evolution reaction. International Journal of Hydrogen Energy 2010;35(19):10067-10072. https://doi.org/10.1016/j.ijhydene.2010.07.144
DUTTA S. Technology assessment of advanced electrolytic hydrogen production. International Journal of Hydrogen Energy 1990;15(6):379-386. https://doi.org/10.1016/0360-3199(90)90194-4
Bockris J, Reddy A. Electrochemistry. Modern Electrochemistry 1970:1-44. https://doi.org/10.1007/978-1-4615-8600-5_1
Soneyik VL, Jenkins D. Water Chemistry, New York, John Wiley and Sons; 1980.
Mesrar F, Kacimi M, Liotta L, Puleo F, Ziyad M, . Hydrogen production on Ni loaded apatite-like oxide synthesized by dissolution-precipitation of natural phosphate. International Journal of Hydrogen Energy 2017;42(30):19458-19466. https://doi.org/10.1016/j.ijhydene.2017.04.286
Evans GP. In Advances in Electrochemical Science and Engineering, vol.1 (Gerisher H, and Tobias CW. Eds.) pp.1-74, VCH, Germany, Verlag, Weinheim;1990.
Torres C, Moreno B, Chinarro E, de Fraga Malfatti C. Nickel-polyaniline composite electrodes for hydrogen evolution reaction in alkaline media. International Journal of Hydrogen Energy 2017;42(32):20410-20419. https://doi.org/10.1016/j.ijhydene.2017.06.213
Hernández-Ibáñez N, Lee J, Iniesta J, Leguey V, Briggs M, Cooper A, Madrid E, Marken F. pH effects on molecular hydrogen storage in porous organic cages deposited onto platinum electrodes. Journal of Electroanalytical Chemistry 2018;819:46-50. https://doi.org/10.1016/j.jelechem.2017.07.009
Pletcher D, Li X. Prospects for alkaline zero gap water electrolysers for hydrogen production. International Journal of Hydrogen Energy 2011;36(23):15089-15104. https://doi.org/10.1016/j.ijhydene.2011.08.080
Santos D, Sequeira C, Figueiredo J. Hydrogen production by alkaline water electrolysis. Química Nova 2013;36(8):1176-1193. https://doi.org/10.1590/s0100-40422013000800017
Rashid Hydrogen production by water electrolysis: a review of alkaline water electrolysis, PEM water electrolysis and high temperature water electrolysis. Int J Eng Adv Technol 2015; 4: 80-93.
De Silva Muñoz L, Bergel A, Féron D, Basséguy R. Hydrogen production by electrolysis of a phosphate solution on a stainless steel cathode. International Journal of Hydrogen Energy 2010;35(16):8561-8568. https://doi.org/10.1016/j.ijhydene.2010.05.101
Pourbaix M. Atlas of Electrochemical Aqueous Solutions, Vol. 1. (pp. 406-413). New York, USA, Pergamon Press; 1966.