Reaction of 1-aminoisoindole with methyl 4-chloro-3-oxobutanoate

Andrii Kysil, Angelina Biitseva, Tetyana Yegorova, Igor Levkov, Zoia Voitenko

Abstract


Condensation of bifunctional 1-aminoisoindole with bis-electrophilic methyl 4-chloro-3-oxobutanoate undergoes regioselectively to afford 2-(chloromethyl)-2-hydroxy-2,6-dihydro­pyrimido[2,1-a]isoindol-4(3H)-one. The structure of the reaction product was unambiguously established by HMQC and HMBC heteronuclear correlations. The functionalization of the synthesized compound by reactions with a series of aliphatic amines was carried out.


Keywords


1-aminoisoindole; methyl 4-chloro-3-oxobutanoate; pyrimido[2,1-a]isoindol-4(3H)-one; amines; heterocyclization; regioisomers; heteronuclear correlation spectroscopy

Full Text:

PDF

References


Speck K, Magauer T. The chemistry of isoindole natural products. Beilstein Journal of Organic Chemistry 2013;9:2048-2078. https://doi.org/10.3762/bjoc.9.243

Bhatia R. Isoindole Derivatives: Propitious Anticancer Structural Motifs. Current Topics in Medicinal Chemistry 2016;17(2):189-207. https://doi.org/10.2174/1568026616666160530154100

O’Donoghue M, Bhatt D, Flather M, Goto S, Angiolillo D, Goodman S, Zeymer U, Aylward P, Montalescot G, Ziecina R, Kobayashi H, Ren F, Wiviott S. Atopaxar and its effects on markers of platelet activation and inflammation: results from the LANCELOT CAD program. Journal of Thrombosis and Thrombolysis 2012;34(1):36-43. https://doi.org/10.1007/s11239-012-0750-6

Gao L, Zhao F, Li S. Efficacy and Safety of Thrombin-Receptor Antagonist (Atopaxar and Vorapaxar) in Patients with Acute Coronary Syndrome or Coronary Artery Disease—A Meta-Analysis of Randomized Controlled Trials. Value in Health Regional Issues 2015;6:22-32. https://doi.org/10.1016/j.vhri.2015.01.003

Li Y, Liu D, Cen S, Proksch P, Lin W. Isoindolinone-type alkaloids from the sponge-derived fungus Stachybotrys chartarum. Tetrahedron 2014;70(39):7010-7015. https://doi.org/10.1016/j.tet.2014.07.047

Belliotti T, Brink W, Kesten S, Rubin J, Wustrow D, Zoski K, Whetzel S, Corbin A, Pugsley T, Heffner T, Wise L. Isoindolinone enantiomers having affinity for the dopamine D4 receptor. Bioorganic & Medicinal Chemistry Letters 1998;8(12):1499-1502. https://doi.org/10.1016/s0960-894x(98)00252-2

Wang K, Bao L, Qi Q, Zhao F, Ma K, Pei Y, Liu H. Erinacerins C–L, Isoindolin-1-ones with α-Glucosidase Inhibitory Activity from Cultures of the Medicinal Mushroom Hericium erinaceus. Journal of Natural Products 2015;78(1):146-154. https://doi.org/10.1021/np5004388

Voitenko Z, Yegorova T, Kysil' A, André C, Wolf J. New cyanine dyes derived from tetrazolo[5,1-a]isoindoles. Tetrahedron 2004;60(1):195-201. https://doi.org/10.1016/j.tet.2003.10.094

Voitenko Z, Kysil' A, Wolf J. New meso substituted cyanine dyes in the 2-R-5H-[1,2,4]triazolo[5,1-a] isoindole series. Dyes and Pigments 2007;74(2):477-482. https://doi.org/10.1016/j.dyepig.2006.03.017

Rodik R, Malytskyi V, Starova V, Yegorova T, Kysil A, Zaporozhets O, Voitenko Z, Kalchenko V. Synthesis, fluorescent properties and aggregation of 2,3-dihydroisoindolenylcalix[4]arenes. Journal of Inclusion Phenomena and Macrocyclic Chemistry 2012;77(1-4):343-350. https://doi.org/10.1007/s10847-012-0252-3

Yu C, Xu Y, Jiao L, Zhou J, Wang Z, Hao E. Isoindole-BODIPY Dyes as Red to Near-Infrared Fluorophores. Chemistry - A European Journal 2012;18(21):6437-6442. https://doi.org/10.1002/chem.201200398

Mykhailiuk P, Maximov N, Kisel A, Voitenko Z, Tolmachev A. Reaction of Ethyl 5-Acetyl-3,4-dihydropyridine-1(2H)-carboxylate with 1,3-N,N-Bis-nucleophiles: A Facile Access to Novel Pyrimidine Derivatives. Synthesis 2011;2011(09):1465-1471. https://doi.org/10.1055/s-0030-1259970

Lessel J. Benzodiazepines and isoindoles by acylation of amidines. Pharmazie 1993;48(11):812–816.

Tyltin A, Lysik N, Demchenko A, Kovtunenko V. Synthesis and reactions of derivatives of isoindolo[2,1-b]-[2,4]benzodiazepine. Chemistry of Heterocyclic Compounds 1985;21(5):598-598. https://doi.org/10.1007/bf00506081

Toja E , Omodei-Salé A , Favara D , Cattaneo C , Gallico L , Galliani G . Synthesis and pregnancy terminating activity of 2-arylimidazo[2,1-a]isoquinolines and isoindoles. Arzneimittel-Forschung 1983;33(9):1222–1225.

Gruppo Lepetit, s.p.A. - US4075342A, 1978. Antireproductive imidazo[2,1-a]isoquinoline compounds.

Tyltin A, Kovtunenko V, Babichev S. 6-H-pyrimido[2,1-a]isoindolium perchlorates. Chemistry of Heterocyclic Compounds 1979;15(7):812-812. https://doi.org/10.1007/bf00473575

Xing R, Zhang H, Yuan J, Zhang K, Li L, Guo H, Zhao L, Zhang C, Li S, Gao T, Liu Y, Wang L. Novel 6-substituted benzoyl and non-benzoyl straight chain pyrrolo[2,3- d ]pyrimidines as potential antitumor agents with multitargeted inhibition of TS, GARFTase and AICARFTase. European Journal of Medicinal Chemistry 2017;139:531-541. https://doi.org/10.1016/j.ejmech.2017.08.032

N'Guessan J, Delaye P, Pénichon M, Charvet C, Neveu C, Ouattara M, Enguehard-Gueiffier C, Gueiffier A, Allouchi H. Discovery of imidazo[1,2-a]pyridine-based anthelmintic targeting cholinergic receptors of Haemonchus contortus. Bioorganic & Medicinal Chemistry 2017;25(24):6695-6706. https://doi.org/10.1016/j.bmc.2017.11.012

Toma A, Mogoşan C, Vlase L, Leonte D, Zaharia V. Heterocycles 39. Synthesis, characterization and evaluation of the anti-inflammatory activity of thiazolo[3,2-b][1,2,4]triazole derivatives bearing pyridin-3/4-yl moiety. Medicinal Chemistry Research 2017;26(10):2602-2613. https://doi.org/10.1007/s00044-017-1959-x

Roslan I, Ng K, Chuah G, Jaenicke S. Reagent-controlled regiodivergent intermolecular cyclization of 2-aminobenzothiazoles with β-ketoesters and β-ketoamides. Beilstein Journal of Organic Chemistry 2017;13:2739-2750. https://doi.org/10.3762/bjoc.13.270

Ratni H, Karp G, Weetall M, Naryshkin N, Paushkin S, Chen K, McCarthy K, Qi H, Turpoff A, Woll M, Zhang X, Zhang N, Yang T, Dakka A, Vazirani P, Zhao X, Pinard E, Green L, David-Pierson P, Tuerck D, Poirier A, Muster W, Kirchner S, Mueller L, Gerlach I, Metzger F. Specific Correction of Alternative Survival Motor Neuron 2 Splicing by Small Molecules: Discovery of a Potential Novel Medicine To Treat Spinal Muscular Atrophy. Journal of Medicinal Chemistry 2016;59(13):6086-6100. https://doi.org/10.1021/acs.jmedchem.6b00459

Villemure E, Volgraf M, Jiang Y, Wu G, Ly C, Yuen P, Lu A, Luo X, Liu M, Zhang S, Lupardus P, Wallweber H, Liederer B, Deshmukh G, Plise E, Tay S, Wang T, Hanson J, Hackos D, Scearce-Levie K, Schwarz J, Sellers B. GluN2A-Selective Pyridopyrimidinone Series of NMDAR Positive Allosteric Modulators with an Improved in Vivo Profile. ACS Medicinal Chemistry Letters 2016;8(1):84-89. https://doi.org/10.1021/acsmedchemlett.6b00388

Volgraf M, Sellers B, Jiang Y, Wu G, Ly C, Villemure E, Pastor R, Yuen P, Lu A, Luo X, Liu M, Zhang S, Sun L, Fu Y, Lupardus P, Wallweber H, Liederer B, Deshmukh G, Plise E, Tay S, Reynen P, Herrington J, Gustafson A, Liu Y, Dirksen A, Dietz M, Liu Y, Wang T, Hanson J, Hackos D, Scearce-Levie K, Schwarz J. Discovery of GluN2A-Selective NMDA Receptor Positive Allosteric Modulators (PAMs): Tuning Deactivation Kinetics via Structure-Based Design. Journal of Medicinal Chemistry 2016;59(6):2760-2779. https://doi.org/10.1021/acs.jmedchem.5b02010




DOI: https://doi.org/10.17721/fujcV6I2P32-37

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

ISSN 2312-3222 (Online)

Creative Commons License
 French-Ukrainian Journal of Chemistry is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2013 French-Ukrainian Journal of Chemistry