A difluorenyl-carbo-cyclohexadiene: prospective chromophore for two-photon absorption

Iaroslav Baglai, Gabriel Ramos-Ortiz, José-Luis Maldonado, Zoia Voitenko, Valérie Maraval, Remi Chauvin

Abstract


For the purpose of outlining structure-property relationships for two-photon absorption (2PA), a "s-locked" carbo-cyclohexadiene with two fluorenyl substituents has been envisaged for comparison with previously studied aromatic carbo-benzene and non-aromatic carbo-quinoid congeners. A representative where the C10-π-conjugated fluorenyl moieties are also connected by a C8-π-insulating 3,6‐dimethoxy‐3,6‐bis(trifluoromethyl)octa‐1,4,7‐triyn-1,8-diyl edge has thus been synthesized in four steps from known C8F triyne and C10 triynyldial, through a [8F+10] cyclization process. In spite of a relatively strong absorbance (e = 84 800 L.mol-1.cm-1 at 634 nm), the non-vanishing green fluorescence (at 533 nm) of the chromophore should allow measurements of the 2PA cross section by both the TPEF and Z-scan methods.


Keywords


Alkyne; Butatriene; Carbo-mer; Two-photon absorption; Fluorene

Full Text:

PDF

References


Göppert-Mayer M. Über Elementarakte mit zwei Quantensprüngen. Annalen der Physik 1931;401(3):273-294. https://doi.org/10.1002/andp.19314010303

Terenziani F, Katan C, Badaeva E, Tretiak S, Blanchard-Desce M. Enhanced Two-Photon Absorption of Organic Chromophores: Theoretical and Experimental Assessments. Advanced Materials 2008;20(24):4641-4678. https://doi.org/10.1002/adma.200800402

Myung Kim H, Rae Cho B. Two-photon materials with large two-photon cross sections. Structure–property relationship. Chem. Commun. 2009;(2):153-164. https://doi.org/10.1039/b813280a

Ogawa K. Two-Photon Absorbing Molecules as Potential Materials for 3D Optical Memory. Applied Sciences 2014;4(1):1-18. https://doi.org/10.3390/app4010001

Liu H, Liu Y, Wang P, Zhang X. Molecular engineering of two-photon fluorescent probes for bioimaging applications. Methods and Applications in Fluorescence 2017;5(1):012003. https://doi.org/10.1088/2050-6120/aa61b0

Pawlicki M, Collins H, Denning R, Anderson H. Two-Photon Absorption and the Design of Two-Photon Dyes. Angewandte Chemie International Edition 2009;48(18):3244-3266. https://doi.org/10.1002/anie.200805257

Ogawa K, Kobuke Y. Two-Photon Photodynamic Therapy by Water-Soluble Self-Assembled Conjugated Porphyrins. BioMed Research International 2013;2013:1-11. https://doi.org/10.1155/2013/125658

Xing J, Zheng M, Duan X. Two-photon polymerization microfabrication of hydrogels: an advanced 3D printing technology for tissue engineering and drug delivery. Chemical Society Reviews 2015;44(15):5031-5039. https://doi.org/10.1039/c5cs00278h

Zhang Y, Jiang M, Han G, Zhao K, Tang B, Wong K. Solvent Effect and Two-Photon Optical Properties of Triphenylamine-Based Donor–Acceptor Fluorophores. The Journal of Physical Chemistry C 2015;119(49):27630-27638. https://doi.org/10.1021/acs.jpcc.5b06762

Ricci F, Carlotti B, Keller B, Bonaccorso C, Fortuna C, Goodson T, Elisei F, Spalletti A. Enhancement of Two-Photon Absorption Parallels Intramolecular Charge-Transfer Efficiency in Quadrupolar versus Dipolar Cationic Chromophores. The Journal of Physical Chemistry C 2017;121(7):3987-4001. https://doi.org/10.1021/acs.jpcc.6b10629

Hrobárik P, Hrobáriková V, Semak V, Kasák P, Rakovský E, Polyzos I, Fakis M, Persephonis P. Quadrupolar Benzobisthiazole-Cored Arylamines as Highly Efficient Two-Photon Absorbing Fluorophores. Organic Letters 2014;16(24):6358-6361. https://doi.org/10.1021/ol503137p

Tran C, Berqouch N, Dhimane H, Clermont G, Blanchard-Desce M, Ogden D, Dalko P. Quinoline-Derived Two-Photon Sensitive Quadrupolar Probes. Chemistry - A European Journal 2017;23(8):1860-1868. https://doi.org/10.1002/chem.201604500

Aratani N, Kim D, Osuka A. π-Conjugation Enlargement Toward the Creation of Multi-Porphyrinic Systems with Large Two-Photon Absorption Properties. Chemistry - An Asian Journal 2009;4(8):1172-1182. https://doi.org/10.1002/asia.200900045

Uoyama H, Kim K, Kuroki K, Shin J, Nagata T, Okujima T, Yamada H, Ono N, Kim D, Uno H. Highly Pure Synthesis, Spectral Assignments, and Two-Photon Properties of Cruciform Porphyrin Pentamers Fused with Benzene Units. Chemistry - A European Journal 2010;16(13):4063-4074. https://doi.org/10.1002/chem.200903196

Baglai I, de Anda-Villa M, Barba-Barba R, Poidevin C, Ramos-Ortíz G, Maraval V, Lepetit C, Saffon-Merceron N, Maldonado J, Chauvin R. Difluorenylcarbo-Benzenes: Synthesis, Electronic Structure, and Two-Photon Absorption Properties of Hydrocarbon Quadrupolar Chromophores. Chemistry - A European Journal 2015;21(40):14186-14195. https://doi.org/10.1002/chem.201500482

Cocq K, Maraval V, Saffon-Merceron N, Saquet A, Poidevin C, Lepetit C, Chauvin R. Carbo-Quinoids: Stability and Reversible Redox-Proaromatic Character towardsCarbo-Benzenes. Angewandte Chemie 2015;127(9):2741-2744. https://doi.org/10.1002/ange.201407889

Cocq K, Poidevin C, Ramos-Ortíz G, Maldonado J-L, Maraval V, Chauvin R. unpublished results.

Leroyer L, Lepetit C, Rives A, Maraval V, Saffon-Merceron N, Kandaskalov D, Kieffer D, Chauvin R. From Hexaoxy-[6]Pericyclynes toCarbo-Cyclohexadienes,Carbo-Benzenes, and Dihydro-Carbo-Benzenes: Synthesis, Structure, and Chromophoric and Redox Properties. Chemistry - A European Journal 2012;18(11):3226-3240. https://doi.org/10.1002/chem.201102993

Rives A, Baglai I, Barthes C, Maraval V, Saffon-Merceron N, Saquet A, Voitenko Z, Volovenko Y, Chauvin R.

Carbo-cyclohexadienes vs. carbo-benzenes: structure and conjugative properties. Chemical Science 2015;6(2):1139-1149. https://doi.org/10.1039/c4sc02742f

Lozynskyi O, , Barthes C, Rives A, Maraval V, Voitenko Z, Chauvin R, , , , , . En route to a dianilinyl-substituted carbo-cyclohexadiene with promising electrical properties. French-Ukrainian Journal of Chemistry 2015;3(1):46-52. https://doi.org/10.17721/fujcv3i1p46-52

Barthes C, , Rives A, Maraval V, Chelain E, Brigaud T, Chauvin R. First example of ring carbomer of 1,4-cyclohexadiene. French-Ukrainian Journal of Chemistry 2015;3(1):60-65. https://doi.org/10.17721/fujcv3i1p60-65

Scott L, DeCicco G, Hyun J, Reinhardt G. Decamethyl[5]pericyclyne. A novel homoconjugated cyclic polyacetylene. Journal of the American Chemical Society 1983;105(26):7760-7761. https://doi.org/10.1021/ja00364a057

Scott L, DeCicco G, Hyun J, Reinhardt G. Cyclynes. Part 4. Pericyclynes of the order [5], [6], [7], and [8]. Simple convergent syntheses and chemical reactions of the first homoconjugated cyclic polyacetylenes. Journal of the American Chemical Society 1985;107(23):6546-6555. https://doi.org/10.1021/ja00309a021

Maraval V, Leroyer L, Harano A, Barthes C, Saquet A, Duhayon C, Shinmyozu T, Chauvin R. 1,4-Dialkynylbutatrienes: Synthesis, Stability, and Perspectives in the Chemistry of carbo-Benzenes. Chemistry - A European Journal 2011;17(18):5086-5100. https://doi.org/10.1002/chem.201002769

Maurette L, Tedeschi C, Sermot E, Soleilhavoup M, Hussain F, Donnadieu B, Chauvin R. Synthesis and stereochemical resolution of functional [5]pericyclynes. Tetrahedron 2004;60(44):10077-10098. https://doi.org/10.1016/j.tet.2004.07.052

Leroyer L, Zou C, Maraval V, Chauvin R. Synthesis and stereochemical resolution of a [6]pericyclynedione: Versatile access to pericyclynediol precursors of carbo-benzenes. Comptes Rendus Chimie 2009;12(3-4):412-429. https://doi.org/10.1016/j.crci.2008.09.018

Chandrasekharam M, Rajkumar G, Srinivasa Rao C, Suresh T, Yella Reddy P, Yum J, Khaja Nazeeruddin M, Graetzel M. A molecularly engineered fluorene-substituted Ru-complex for efficient mesoscopic dye-sensitized solar cells. Advances in Natural Sciences: Nanoscience and Nanotechnology 2011;2(3):035016. https://doi.org/10.1088/2043-6262/2/3/035016

Baglai I, Maraval V, Voitenko Z, Volovenko Y, Chauvin R. Towards fluorescent indolyl-carbo-benzenes. French-Ukr. J. Chem. 2013; 1(1):48-53.




DOI: https://doi.org/10.17721/fujcV6I2P9-17

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

ISSN 2312-3222 (Online)

Creative Commons License
 French-Ukrainian Journal of Chemistry is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2013 French-Ukrainian Journal of Chemistry