Physico-chemical properties of β-diketone phosphorus-containing dendrimers

Authors

  • Viktoriia Starova Taras Shevchenko National University of Kyiv
  • Mykhailo Ianchuk 1. Taras Shevchenko National University of Kyiv, 64, Volodymyrs'ka St., 01601 Kyiv,Ukraine 2. Laboratoire de Chimie de Coordination UPR 8241 CNRS, 205 Route de Narbonne, 31077 Toulouse Cedex 04, France 3. Université de Toulouse; UPS, INPT; LCC; F-31077 Toulouse, France
  • Olga Zaporozhets Taras Shevchenko National University of Kyiv
  • Anne-Marie Caminade 1. Laboratoire de Chimie de Coordination UPR 8241 CNRS, 205 Route de Narbonne, 31077 Toulouse Cedex 04, France 2. Université de Toulouse; UPS, INPT; LCC; F-31077 Toulouse, France

DOI:

https://doi.org/10.17721/fujcV5I2P128-135

Keywords:

dendrimer, β-diketone, fluorescence, interaction with organic substrates

Abstract

Protolytic, absorbance and fluorescence properties of β-diketone phosphorus-containing dendrimers based on cyclotriphosphazene core were studied. Dendrimer solutions in acetone are characterized by intense absorbance band at ≈ 340 nm (ε340≈ 8.5·104L/mol·сm) and fluorescence band with maximum at 440 nm. Position of these maxima does not change in various solvents, unlike the bands of monomer β-diketone. It was found that dendrimer aggregation is accompanied by appearance of a second absorbance band ε400≈ 4.5·103L/mol·сm, by red shift of emission spectra ∆λ ≈ 10 nm and also by decrease in surface tension of acetone solution. Ability of dendrimer aggregates to solubilize organic substrates was observed with the fluorescent indicator acridine.

Author Biographies

Viktoriia Starova, Taras Shevchenko National University of Kyiv

PhD., analytical chemistry department

Mykhailo Ianchuk, 1. Taras Shevchenko National University of Kyiv, 64, Volodymyrs'ka St., 01601 Kyiv,Ukraine 2. Laboratoire de Chimie de Coordination UPR 8241 CNRS, 205 Route de Narbonne, 31077 Toulouse Cedex 04, France 3. Université de Toulouse; UPS, INPT; LCC; F-31077 Toulouse, France

PhD  student

Olga Zaporozhets, Taras Shevchenko National University of Kyiv

Dr., Head of analytical chemistry department, chemical faculty

Anne-Marie Caminade, 1. Laboratoire de Chimie de Coordination UPR 8241 CNRS, 205 Route de Narbonne, 31077 Toulouse Cedex 04, France 2. Université de Toulouse; UPS, INPT; LCC; F-31077 Toulouse, France

Dr., Directeur de Recherche CNRS (DR1), Head of the "Dendrimer and Heterochemistry" group Laboratoire de Chimie de Coordination du CNRS 

References

Anne-Marie Caminade, Cedric-Olivier Turrin, Regis Laurent, ArmelleOuali, Beatrice Delavaux-Nicot. Dendrimers: Towards Catalytic, Material and Biomedical Uses. Wiley (2011). https://doi.org/10.1002/9781119976530

Ceroni P, Bergamini G, Marchioni F, Balzani V. Luminescence as a tool to investigate dendrimer properties. Progress in Polymer Science 2005;30(3-4):453-473. https://doi.org/10.1016/j.progpolymsci.2005.01.003

Hwang S, Shreiner C, Moorefield C, Newkome G. Recent progress and applications for metallodendrimers. New Journal of Chemistry 2007;31(7):1192. https://doi.org/10.1039/b612656c

Bergamini G, Ceroni P, Balzani V, Cornelissen L, van Heyst J, Lee S, Vögtle F. Dendrimers based on a bis-cyclam core as fluorescence sensors for metal ions. Journal of Materials Chemistry 2005;15(27-28):2959. https://doi.org/10.1039/b501869b

Andrés R, de Jesús E, Flores J. Catalysts based on palladium dendrimers. New Journal of Chemistry 2007;31(7):1161. https://doi.org/10.1039/b615761k

Peters J, Huskens J, Raber D. Lanthanide induced shifts and relaxation rate enhancements. Progress in Nuclear Magnetic Resonance Spectroscopy 1996;28(3-4):283-350. https://doi.org/10.1016/0079-6565(95)01026-2

Cheng Y, Zhao L, Li Y, Xu T. Design of biocompatible dendrimers for cancer diagnosis and therapy: current status and future perspectives. Chemical Society Reviews 2011;40(5):2673. https://doi.org/10.1039/c0cs00097c

Shen L, Li F, Sha Y, Hong X, Huang C. Synthesis of fluorescent dendritic 8-hydroxyquinoline ligands and investigation on their coordinated Zn(II) complexes. Tetrahedron Letters 2004;45(20):3961-3964. https://doi.org/10.1016/j.tetlet.2004.03.106

Bergamini G, Ceroni P, Balzani V, Cornelissen L, van Heyst J, Lee S, Vögtle F. Dendrimers based on a bis-cyclam core as fluorescence sensors for metal ions. Journal of Materials Chemistry 2005;15(27-28):2959. https://doi.org/10.1039/b501869b

Nakazono M, Ma L, Zaitsu K. Synthesis of poly (3,4,5-trihydroxybenzoate ester) dendrimers and their chemiluminescence. Tetrahedron Letters 2002;43(45):8185-8189. https://doi.org/10.1016/s0040-4039(02)01959-7

Majoral J, Caminade A. Dendrimers Containing Heteroatoms (Si, P, B, Ge, or Bi). Chemical Reviews 1999;99(3):845-880. https://doi.org/10.1021/cr970414j

Caminade A, Hameau A, Majoral J. The specific functionalization of cyclotriphosphazene for the synthesis of smart dendrimers. Dalton Transactions 2016;45(5):1810-1822. https://doi.org/10.1039/c5dt03047a

Caminade A. Inorganic dendrimers: recent advances for catalysis, nanomaterials, and nanomedicine. Chemical Society Reviews 2016;45(19):5174-5186. https://doi.org/10.1039/c6cs00074f

Wu F, Han S, Zhang C, He Y. Synthesis of a Highly Fluorescent β-Diketone−Europium Chelate and Its Utility in Time-Resolved Fluoroimmunoassay of Serum Total Thyroxine. Analytical Chemistry 2002;74(22):5882-5889. https://doi.org/10.1021/ac025727f

Singh D, Singh K, Bhagwan S, Saini R, Srivastava R, Singh I. Preparation and photoluminescence enhancement in terbium(III) ternary complexes with ��-diketone and monodentate auxiliary ligands. Cogent Chemistry 2016;2(1):. https://doi.org/10.1080/23312009.2015.1134993

Keller M, Ianchuk M, Ladeira S, Taillefer M, Caminade A, Majoral J, Ouali A. Synthesis of Dendritic β-Diketones and Their Application in Copper-Catalyzed Diaryl Ether Formation. European Journal of Organic Chemistry 2011;2012(5):1056-1062. https://doi.org/10.1002/ejoc.201101521

Malysheva ML. Guidance for laboratory studies of colloidal chemistry for students of chemistry department / Publishing and Printing Center "Kyiv University", 2014. - 54 p.

Zenobi R, Schmid T, Syunyaev R, Balabin R, . Physical chemistry of acridine adsorption onto gold surface: the influence of nanostructure as revealed by near-infrared and tipenhanced Raman spectroscopy (TERS) (Notice of Withdrawal). Physical Chemistry of Interfaces and Nanomaterials X 2011;:. https://doi.org/10.1117/12.892581

Bonneau R, Carmichael I, Hug G. Molar absorption coefficients of transient species in solution. Pure and Applied Chemistry 1991;63(2):289-299. https://doi.org/10.1351/pac199163020289

Downloads

Published

2017-12-30