Physico-chemical properties of β-diketone phosphorus-containing dendrimers

Viktoriia Starova, Mykhailo Ianchuk, Olga Zaporozhets, Anne-Marie Caminade

Abstract


Protolytic, absorbance and fluorescence properties of β-diketone phosphorus-containing dendrimers based on cyclotriphosphazene core were studied. Dendrimer solutions in acetone are characterized by intense absorbance band at ≈ 340 nm (ε340≈ 8.5·104L/mol·сm) and fluorescence band with maximum at 440 nm. Position of these maxima does not change in various solvents, unlike the bands of monomer β-diketone. It was found that dendrimer aggregation is accompanied by appearance of a second absorbance band ε400≈ 4.5·103L/mol·сm, by red shift of emission spectra ∆λ ≈ 10 nm and also by decrease in surface tension of acetone solution. Ability of dendrimer aggregates to solubilize organic substrates was observed with the fluorescent indicator acridine.


Keywords


dendrimer; β-diketone; fluorescence; interaction with organic substrates

Full Text:

PDF

References


Anne-Marie Caminade, Cedric-Olivier Turrin, Regis Laurent, ArmelleOuali, Beatrice Delavaux-Nicot. Dendrimers: Towards Catalytic, Material and Biomedical Uses. Wiley (2011). https://doi.org/10.1002/9781119976530

Ceroni P, Bergamini G, Marchioni F, Balzani V. Luminescence as a tool to investigate dendrimer properties. Progress in Polymer Science 2005;30(3-4):453-473. https://doi.org/10.1016/j.progpolymsci.2005.01.003

Hwang S, Shreiner C, Moorefield C, Newkome G. Recent progress and applications for metallodendrimers. New Journal of Chemistry 2007;31(7):1192. https://doi.org/10.1039/b612656c

Bergamini G, Ceroni P, Balzani V, Cornelissen L, van Heyst J, Lee S, Vögtle F. Dendrimers based on a bis-cyclam core as fluorescence sensors for metal ions. Journal of Materials Chemistry 2005;15(27-28):2959. https://doi.org/10.1039/b501869b

Andrés R, de Jesús E, Flores J. Catalysts based on palladium dendrimers. New Journal of Chemistry 2007;31(7):1161. https://doi.org/10.1039/b615761k

Peters J, Huskens J, Raber D. Lanthanide induced shifts and relaxation rate enhancements. Progress in Nuclear Magnetic Resonance Spectroscopy 1996;28(3-4):283-350. https://doi.org/10.1016/0079-6565(95)01026-2

Cheng Y, Zhao L, Li Y, Xu T. Design of biocompatible dendrimers for cancer diagnosis and therapy: current status and future perspectives. Chemical Society Reviews 2011;40(5):2673. https://doi.org/10.1039/c0cs00097c

Shen L, Li F, Sha Y, Hong X, Huang C. Synthesis of fluorescent dendritic 8-hydroxyquinoline ligands and investigation on their coordinated Zn(II) complexes. Tetrahedron Letters 2004;45(20):3961-3964. https://doi.org/10.1016/j.tetlet.2004.03.106

Bergamini G, Ceroni P, Balzani V, Cornelissen L, van Heyst J, Lee S, Vögtle F. Dendrimers based on a bis-cyclam core as fluorescence sensors for metal ions. Journal of Materials Chemistry 2005;15(27-28):2959. https://doi.org/10.1039/b501869b

Nakazono M, Ma L, Zaitsu K. Synthesis of poly (3,4,5-trihydroxybenzoate ester) dendrimers and their chemiluminescence. Tetrahedron Letters 2002;43(45):8185-8189. https://doi.org/10.1016/s0040-4039(02)01959-7

Majoral J, Caminade A. Dendrimers Containing Heteroatoms (Si, P, B, Ge, or Bi). Chemical Reviews 1999;99(3):845-880. https://doi.org/10.1021/cr970414j

Caminade A, Hameau A, Majoral J. The specific functionalization of cyclotriphosphazene for the synthesis of smart dendrimers. Dalton Transactions 2016;45(5):1810-1822. https://doi.org/10.1039/c5dt03047a

Caminade A. Inorganic dendrimers: recent advances for catalysis, nanomaterials, and nanomedicine. Chemical Society Reviews 2016;45(19):5174-5186. https://doi.org/10.1039/c6cs00074f

Wu F, Han S, Zhang C, He Y. Synthesis of a Highly Fluorescent β-Diketone−Europium Chelate and Its Utility in Time-Resolved Fluoroimmunoassay of Serum Total Thyroxine. Analytical Chemistry 2002;74(22):5882-5889. https://doi.org/10.1021/ac025727f

Singh D, Singh K, Bhagwan S, Saini R, Srivastava R, Singh I. Preparation and photoluminescence enhancement in terbium(III) ternary complexes with ��-diketone and monodentate auxiliary ligands. Cogent Chemistry 2016;2(1):. https://doi.org/10.1080/23312009.2015.1134993

Keller M, Ianchuk M, Ladeira S, Taillefer M, Caminade A, Majoral J, Ouali A. Synthesis of Dendritic β-Diketones and Their Application in Copper-Catalyzed Diaryl Ether Formation. European Journal of Organic Chemistry 2011;2012(5):1056-1062. https://doi.org/10.1002/ejoc.201101521

Malysheva ML. Guidance for laboratory studies of colloidal chemistry for students of chemistry department / Publishing and Printing Center "Kyiv University", 2014. - 54 p.

Zenobi R, Schmid T, Syunyaev R, Balabin R, . Physical chemistry of acridine adsorption onto gold surface: the influence of nanostructure as revealed by near-infrared and tipenhanced Raman spectroscopy (TERS) (Notice of Withdrawal). Physical Chemistry of Interfaces and Nanomaterials X 2011;:. https://doi.org/10.1117/12.892581

Bonneau R, Carmichael I, Hug G. Molar absorption coefficients of transient species in solution. Pure and Applied Chemistry 1991;63(2):289-299. https://doi.org/10.1351/pac199163020289




DOI: https://doi.org/10.17721/fujcV5I2P128-135

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

ISSN 2312-3222 (Online)

Creative Commons License
 French-Ukrainian Journal of Chemistry is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2013 French-Ukrainian Journal of Chemistry