Mechanical alloys Mg-Me (Me: Ti, Fe, Ni, Al) & Mg-Me1-Me2(Ме1:Al, Me2: Ti, Fe, Ni) with low resistance and improved kinetics of hydrogenation/dehydrogenation for hydrogen storage applications

Authors

  • Olga Ershova Frantsevych Institute for Problems of Materials Science of the NASU
  • V. Dobrovolsky
  • Y. Solonin

DOI:

https://doi.org/10.17721/fujcV6I1P31-55

Keywords:

Mechanical alloy, Hydrogen-sorption properties, Thermal stability, Thermodesorption spectroscopy, Reactive mechanical alloying

Abstract

Changes in MgH2 decomposition kinetics were investigated in dependence on complex doping of MgH2 by Al, Ti, Ni,and Fe. Reactive mechanochemical alloying method (RMA) was applied in the temperature descending regime. It was found that addition of Al+Ni+Ti, Al+Ti, Fe+Ti (see below) and Al+Fe elements combinations led to a lower  thermal stability and, consequently, to a lowering of the temperature of hydrogen desorption onset. Whereas desorption began at temperature of 320 °C from the pure MgH2, the aditions of Al, Ni, Ti and Fe lowered the start of the desorption down to 250°C (at hydrogen pressure 0.1 MPa in the reactor). Very fast desorption kineticsprecize at 300 0C and PH 2= 0.1 MPa were observed for Mg+Me mixture in comparison with the pure Mg. Sorption capacity of investigated mechanically-alloyed composites varied from 5 to 6.5 wt. % H2. The tested materials showed a high potential as hydrogen storage alloys especially for stationary application.

References

Huot J, Liang G, Schulz R. Mechanically alloyed metal hydride systems. Applied Physics A Materials Science & Processing 2001;72(2):187-195. https://doi.org/10.1007/s003390100772

Liang G, Huot J, Boily S, Van Neste A, Schulz R. Catalytic effect of transition metals on hydrogen sorption in nanocrystalline ball milled MgH2–Tm (Tm=Ti, V, Mn, Fe and Ni) systems. Journal of Alloys and Compounds 1999;292(1-2):247-252. https://doi.org/10.1016/s0925-8388(99)00442-9

Huot J, Pelletier J, Liang G, Sutton M, Schulz R. Structure of nanocomposite metal hydrides. Journal of Alloys and Compounds 2002;330-332:727-731. https://doi.org/10.1016/s0925-8388(01)01662-0

Oelerich W, Klassen T, Bormann R. Metal oxides as catalysts for improved hydrogen sorption in nanocrystalline Mg-based materials. Journal of Alloys and Compounds 2001;315(1-2):237-242. https://doi.org/10.1016/s0925-8388(00)01284-6

Dehouche Z, Goyette J, Bose T, Schulz R. Moisture effect on hydrogen storage properties of nanostructured MgH2–V–Ti composite. International Journal of Hydrogen Energy 2003;28(9):983-988. https://doi.org/10.1016/s0360-3199(02)00196-9

Huot J, Pelletier J, Lurio L, Sutton M, Schulz R. Investigation of dehydrogenation mechanism of MgH2–Nb nanocomposites. Journal of Alloys and Compounds 2003;348(1-2):319-324. https://doi.org/10.1016/s0925-8388(02)00839-3

Barkhordarian G, Klassen T, Bormann R. Fast hydrogen sorption kinetics of nanocrystalline Mg using Nb2O5 as catalyst. Scripta Materialia 2003;49(3):213-217. https://doi.org/10.1016/s1359-6462(03)00259-8

Li Q, Lin Q, Chou K, Jiang L, Zhan F. Hydrogen storage properties of mechanically alloyedMg–8 mol% LaNi0.5 composite. Journal of Materials Research 2004;19(10):2871-2876. https://doi.org/10.1557/jmr.2004.0396

Shang C. Mechanical alloying and electronic simulations of (MgH2+M) systems (M=Al, Ti, Fe, Ni, Cu and Nb) for hydrogen storage. International Journal of Hydrogen Energy 2004;29(1):73-80. https://doi.org/10.1016/s0360-3199(03)00045-4

Bassetti A, Bonetti E, Pasquini L, Montone A, Grbovic J, Vittori Antisari M. Hydrogen desorption from ball milled MgH2 catalyzed with Fe. The European Physical Journal B 2005;43(1):19-27. https://doi.org/10.1140/epjb/e2005-00023-9

Deledda S, Borissova A, Poinsignon C, Botta W, Dornheim M, Klassen T. H-sorption in MgH2 nanocomposites containing Fe or Ni with fluorine. Journal of Alloys and Compounds 2005;404-406:409-412. https://doi.org/10.1016/j.jallcom.2005.01.115

Hanada N, Ichikawa T, Fujii H. Catalytic effect of Ni nano-particle and Nb oxide on H-desorption properties in MgH2 prepared by ball milling. Journal of Alloys and Compounds 2005;404-406:716-719. https://doi.org/10.1016/j.jallcom.2004.12.166

BORGSCHULTE A, RECTOR J, DAM B, GRIESSEN R, ZUTTEL A. The role of niobium oxide as a surface catalyst for hydrogen absorption. Journal of Catalysis 2005;235(2):353-358. https://doi.org/10.1016/j.jcat.2005.08.018

Huhn P, Dornheim M, Klassen T, Bormann R. Thermal stability of nanocrystalline magnesium for hydrogen storage. Journal of Alloys and Compounds 2005;404-406:499-502. https://doi.org/10.1016/j.jallcom.2004.10.087

Aguey-Zinsou K, Ares Fernandez J, Klassen T, Bormann R. Using MgO to improve the (de)hydriding properties of magnesium. Materials Research Bulletin 2006;41(6):1118-1126. https://doi.org/10.1016/j.materresbull.2005.11.011

Delchev P, Himitliiska T, Spassov T. Microstructure and hydriding properties of ball-milled Mg–10at.%MmNi5 (Mm=La, Ce-rich mischmetal) composites. Journal of Alloys and Compounds 2006;417(1-2):85-91. https://doi.org/10.1016/j.jallcom.2005.09.010

E. David, “Nanocrystalline magnesium andits properties of hydrogen sorption”, Achievements in Materials and Manufacturing Engineering,Vol. 20, pp. 87-90, 2007.

JIN S, SHIM J, AHN J, CHO Y, YI K. Improvement in hydrogen sorption kinetics of MgH2 with Nb hydride catalyst. Acta Materialia 2007;55(15):5073-5079. https://doi.org/10.1016/j.actamat.2007.05.029

Xie L, Liu Y, Wang Y, Zheng J, Li X. Superior hydrogen storage kinetics of MgH2 nanoparticles doped with TiF3. Acta Materialia 2007;55(13):4585-4591. https://doi.org/10.1016/j.actamat.2007.04.020

IMAMURA H, YOSHIHARA K, YOO M, KITAZAWA I, SAKATA Y, OOSHIMA S. Dehydriding of Sn/MgH2Sn/MgH2 nanocomposite formed by ball milling of MgH2MgH2 with Sn. International Journal of Hydrogen Energy 2007;32(17):4191-4194. https://doi.org/10.1016/j.ijhydene.2007.05.035

Varin R, Czujko T, Wasmund E, Wronski Z. Hydrogen desorption properties of MgH2 nanocomposites with nano-oxides and Inco micrometric- and nanometric-Ni. Journal of Alloys and Compounds 2007;446-447:63-66. https://doi.org/10.1016/j.jallcom.2006.10.134

Dobrovolsky V, Ershova O, Solonin Y, Khyzhun O, Paul-Boncour V. Influence of TiB2 addition upon thermal stability and decomposition temperature of the MgH2 hydride of a Mg-based mechanical alloy. Journal of Alloys and Compounds 2008;465(1-2):177-182. https://doi.org/10.1016/j.jallcom.2007.10.125

Polanski M, Bystrzycki J. Comparative studies of the influence of different nano-sized metal oxides on the hydrogen sorption properties of magnesium hydride. Journal of Alloys and Compounds 2009;486(1-2):697-701. https://doi.org/10.1016/j.jallcom.2009.07.042

Patah A, Takasaki A, Szmyd J. Influence of multiple oxide (Cr2O3/Nb2O5) addition on the sorption kinetics of MgH2. International Journal of Hydrogen Energy 2009;34(7):3032-3037. https://doi.org/10.1016/j.ijhydene.2009.01.086

Ma L, Kang X, Dai H, Liang Y, Fang Z, Wang P, Wang P, Cheng H. Superior catalytic effect of TiF3 over TiCl3 in improving the hydrogen sorption kinetics of MgH2: Catalytic role of fluorine anion. Acta Materialia 2009;57(7):2250-2258. https://doi.org/10.1016/j.actamat.2009.01.025

Xie L, Liu Y, Zhang X, Qu J, Wang Y, Li X. Catalytic effect of Ni nanoparticles on the desorption kinetics of MgH2 nanoparticles. Journal of Alloys and Compounds 2009;482(1-2):388-392. https://doi.org/10.1016/j.jallcom.2009.04.028

Varin R, Czujko T, Wronski Z. Thermal stability of Vale Inco nanonometric nickel as a catalytic additive for magnesium hydride (MgH2). International Journal of Hydrogen Energy 2009;34(20):8603-8610. https://doi.org/10.1016/j.ijhydene.2009.07.110

Imamura H, Tanaka K, Kitazawa I, Sumi T, Sakata Y, Nakayama N, Ooshima S. Hydrogen storage properties of nanocrystalline MgH2 and MgH2/Sn nanocomposite synthesized by ball milling. Journal of Alloys and Compounds 2009;484(1-2):939-942. https://doi.org/10.1016/j.jallcom.2009.05.072

Agarwal S, Aurora A, Jain A, Jain I, Montone A. Catalytic effect of ZrCrNi alloy on hydriding properties of MgH2. International Journal of Hydrogen Energy 2009;34(22):9157-9162. https://doi.org/10.1016/j.ijhydene.2009.09.034

Varin R, Czujko T, Chiu C, Pulz R, Wronski Z. Synthesis of nanocomposite hydrides for solid-state hydrogen storage by controlled mechanical milling techniques. Journal of Alloys and Compounds 2009;483(1-2):252-255. https://doi.org/10.1016/j.jallcom.2008.07.207

Ma L, Wang P, Cheng H. Hydrogen sorption kinetics of MgH2 catalyzed with titanium compounds. International Journal of Hydrogen Energy 2010;35(7):3046-3050. https://doi.org/10.1016/j.ijhydene.2009.07.014

Mao J, Guo Z, Yu X, Liu H, Wu Z, Ni J. Enhanced hydrogen sorption properties of Ni and Co-catalyzed MgH2. International Journal of Hydrogen Energy 2010;35(10):4569-4575. https://doi.org/10.1016/j.ijhydene.2010.02.107

Tian M, Shang C. Nano-structured MgH2 catalyzed by TiC nanoparticles for hydrogen storage. Journal of Chemical Technology & Biotechnology 2010;86(1):69-74. https://doi.org/10.1002/jctb.2479

Mahmoudi N, Kaflou A, Simchi A. Hydrogen desorption properties of MgH2–TiCr1.2Fe0.6 nanocomposite prepared by high-energy mechanical alloying. Journal of Power Sources 2011;196(10):4604-4608. https://doi.org/10.1016/j.jpowsour.2011.01.001

Liu G, Wang Y, Jiao L, Yuan H. Solid-state synthesis of amorphous TiB2 nanoparticles on graphene nanosheets with enhanced catalytic dehydrogenation of MgH2. International Journal of Hydrogen Energy 2014;39(8):3822-3829. https://doi.org/10.1016/j.ijhydene.2013.12.133

Jain P, Dixit V, Jain A, Srivastava O, Huot J. Effect of Magnesium Fluoride on Hydrogenation Properties of Magnesium Hydride. Energies 2015;8(11):12546-12556. https://doi.org/10.3390/en81112330

Kadri A, Jia Y, Chen Z, Yao X. Catalytically Enhanced Hydrogen Sorption in Mg-MgH2 by Coupling Vanadium-Based Catalyst and Carbon Nanotubes. Materials 2015;8(6):3491-3507. https://doi.org/10.3390/ma8063491

Shahi R, Tiwari A, Shaz M, Srivastava O. Studies on de/rehydrogenation characteristics of nanocrystalline MgH2 co-catalyzed with Ti, Fe and Ni. International Journal of Hydrogen Energy 2013;38(6):2778-2784. https://doi.org/10.1016/j.ijhydene.2012.11.073

Ivanov E, Konstanchuk I, Stepanov A, Boldyrev V. Magnesium mechanical alloys for hydrogen storage. Journal of the Less Common Metals 1987;131(1-2):25-29. https://doi.org/10.1016/0022-5088(87)90497-8

Imamura H, Sakasai N, Kajii Y. Hydrogen absorption of Mg-Based composites prepared by mechanical milling: Factors affecting its characteristics. Journal of Alloys and Compounds 1996;232(1-2):218-223. https://doi.org/10.1016/0925-8388(95)01882-4

Imamura H, Sakasai N, Fujinaga T. Characterization and hydriding properties of Mg-graphite composites prepared by mechanical grinding as new hydrogen storage materials. Journal of Alloys and Compounds 1997;253-254:34-37. https://doi.org/10.1016/s0925-8388(96)03074-5

Zaluska A, Zaluski L, Ström–Olsen J. Nanocrystalline magnesium for hydrogen storage. Journal of Alloys and Compounds 1999;288(1-2):217-225. https://doi.org/10.1016/s0925-8388(99)00073-0

Bobet J, Even C, Nakamura Y, Akiba E, Darriet B. Synthesis of magnesium and titanium hydride via reactive mechanical alloying. Journal of Alloys and Compounds 2000;298(1-2):279-284. https://doi.org/10.1016/s0925-8388(99)00628-3

Bobet J. Study of Mg-M (M=Co, Ni and Fe) mixture elaborated by reactive mechanical alloying: hydrogen sorption properties. International Journal of Hydrogen Energy 2001;26(5):493-501. https://doi.org/10.1016/s0360-3199(00)00082-3

Imamura H, Tabata S, Shigetomi N, Takesue Y, Sakata Y. Composites for hydrogen storage by mechanical grinding of graphite carbon and magnesium. Journal of Alloys and Compounds 2002;330-332:579-583. https://doi.org/10.1016/s0925-8388(01)01506-7

Imamura H, Kusuhara M, Minami S, Matsumoto M, Masanari K, Sakata Y, Itoh K, Fukunaga T. Carbon nanocomposites synthesized by high-energy mechanical milling of graphite and magnesium for hydrogen storage. Acta Materialia 2003;51(20):6407-6414. https://doi.org/10.1016/j.actamat.2003.08.010

Song M. Hydriding kinetics of a mechanically alloyed mixture Mg–10wt% Ni. International Journal of Hydrogen Energy 2003;28(4):403-408. https://doi.org/10.1016/s0360-3199(02)00133-7

CHEN D. Microstructure and hydrogen storage property of Mg/MWNTs composites. Journal of Alloys and Compounds 2004;372(1-2):231-237. https://doi.org/10.1016/s0925-8388(03)01040-5

Shang C, Guo Z. Effect of carbon on hydrogen desorption and absorption of mechanically milled MgH2. Journal of Power Sources 2004;129(1):73-80. https://doi.org/10.1016/j.jpowsour.2003.11.013

Dal Toè S, Lo Russo S, Maddalena A, Principi G, Saber A, Sartori S, Spataru T. Hydrogen desorption from magnesium hydride–graphite nanocomposites produced by ball milling. Materials Science and Engineering: B 2004;108(1-2):24-27. https://doi.org/10.1016/j.mseb.2003.10.030

S. N. Klyamkin, B.P.Tarasov and E.L. Straz, “Ball milling synthesis and properties of hydrogen sorbents in magnesium hydride-graphite system”, Alternative Energy and Ecology., Vol.1, pp. 27-29, 2005.

Spassov T, Rangelova V, Solsona P, Baró M, Zander D, Köster U. Hydriding/dehydriding properties of nanocrystalline Mg87Ni3Al3M7 (M=Ti, Mn, Ce, La) alloys prepared by ball milling. Journal of Alloys and Compounds 2005;398(1-2):139-144. https://doi.org/10.1016/j.jallcom.2005.02.035

Delchev P, Solsona P, Drenchev B, Drenchev N, Spassov T, Baró M. Direct hydriding of Mg87Al7Ni3Mn3 by reactive mechanical milling in hydrogen atmosphere and influence of particle size on the dehydriding reaction. Journal of Alloys and Compounds 2005;388(1):98-103. https://doi.org/10.1016/j.jallcom.2004.07.001

Spassov T, Petkov V, Solsona P. Hydriding/dehydriding of Mg87Ni3Al3Mm7 (Mm=La, Ce-rich mischmetal) alloy produced by mechanical milling. Journal of Alloys and Compounds 2005;403(1-2):363-367. https://doi.org/10.1016/j.jallcom.2005.06.009

Doppiu S, Solsona P, Spassov T, Barkhordarian G, Dornheim M, Klassen T, Suriñach S, Baró M. Thermodynamic properties and absorption–desorption kinetics of Mg87Ni10Al3 alloy synthesised by reactive ball milling under H2 atmosphere. Journal of Alloys and Compounds 2005;404-406:27-30. https://doi.org/10.1016/j.jallcom.2005.02.082

Varin R, Li S, Chiu C, Guo L, Morozova O, Khomenko T, Wronski Z. Nanocrystalline and non-crystalline hydrides synthesized by controlled reactive mechanical alloying/milling of Mg and Mg–X (X = Fe, Co, Mn, B) systems. Journal of Alloys and Compounds 2005;404-406:494-498. https://doi.org/10.1016/j.jallcom.2004.12.176

Kondo T, Shindo K, Sakurai Y. Dependence of hydrogen storage characteristics of Mg–TiFe0.92Mn0.08 composite on amount of TiFe0.92Mn0.08. Journal of Alloys and Compounds 2005;404-406:511-514. https://doi.org/10.1016/j.jallcom.2004.10.090

Bystrzycki J, Czujko T, Varin R. Processing by controlled mechanical milling of nanocomposite powders Mg + X (X = Co, Cr, Mo, V, Y, Zr) and their hydrogenation properties. Journal of Alloys and Compounds 2005;404-406:507-510. https://doi.org/10.1016/j.jallcom.2004.10.094

Au M. Hydrogen storage properties of magnesium based nanostructured composite materials. Materials Science and Engineering: B 2005;117(1):37-44. https://doi.org/10.1016/j.mseb.2004.10.017

Yermakov A, Mushnikov N, Uimin M, Gaviko V, Tankeev A, Skripov A, Soloninin A, Buzlukov A. Hydrogen reaction kinetics of Mg-based alloys synthesized by mechanical milling. Journal of Alloys and Compounds 2006;425(1-2):367-372. https://doi.org/10.1016/j.jallcom.2006.01.039

JENSEN T, ANDREASEN A, VEGGE T, ANDREASEN J, STAHL K, PEDERSEN A, NIELSEN M, MOLENBROEK A, FLEMMINGBESENBACHER . Dehydrogenation kinetics of pure and nickel-doped magnesium hydride investigated by in situ time-resolved powder X-ray diffraction. International Journal of Hydrogen Energy 2006;31(14):2052-2062. https://doi.org/10.1016/j.ijhydene.2006.02.004

Wu C, Wang P, Yao X, Liu C, Chen D, Lu G, Cheng H. Effect of carbon/noncarbon addition on hydrogen storage behaviors of magnesium hydride. Journal of Alloys and Compounds 2006;414(1-2):259-264. https://doi.org/10.1016/j.jallcom.2005.07.021

IMAMURA H, KITAZAWA I, TANABE Y, SAKATA Y. Hydrogen storage in carbon/Mg nanocomposites synthesized by ball milling. International Journal of Hydrogen Energy 2007;32(13):2408-2411. https://doi.org/10.1016/j.ijhydene.2006.10.058

Rud A, Lakhnik A, Ivanchenko V, Uvarov V, Shkola A, Dekhtyarenko V, Ivaschuk L, Kuskova N. Hydrogen storage of the Mg–C composites. International Journal of Hydrogen Energy 2008;33(4):1310-1316. https://doi.org/10.1016/j.ijhydene.2007.12.032

Ershova O, Dobrovolsky V, Solonin Y, Khyzhun O, Koval A. Influence of Ti, Mn, Fe, and Ni addition upon thermal stability and decomposition temperature of the MgH2 phase of alloys synthesized by reactive mechanical alloying. Journal of Alloys and Compounds 2008;464(1-2):212-218. https://doi.org/10.1016/j.jallcom.2007.10.064

ERSHOVA O, DOBROVOLSKY V, SOLONIN Y, MOROZOVA R. ABOUT MANNER AND MECHANISMS OF REDUCTION OF THERMAL FIRMNESS OF Mg -, Ti -, Y – BASED MECHANICAL ALLOYS. NATO Security through Science Series A: Chemistry and Biology ;:429-436. https://doi.org/10.1007/978-1-4020-5514-0_53

Ershova O, Dobrovolsky V, Solonin Y, Khyzhun O. Thermal Stability And Hydrogen Sorption Properties Of The Mgh2 Hydride Derived By The Reactive Milling Of The Mg + 10 Wt% Ti Mixture. Carbon Nanomaterials in Clean Energy Hydrogen Systems ;:473-483. https://doi.org/10.1007/978-1-4020-8898-8_60

Milanese C, Girella A, Bruni G, Berbenni V, Cofrancesco P, Marini A, Villa M, Matteazzi P. Hydrogen storage in magnesium–metal mixtures: Reversibility, kinetic aspects and phase analysis. Journal of Alloys and Compounds 2008;465(1-2):396-405. https://doi.org/10.1016/j.jallcom.2007.10.091

Kwon S, Baek S, Mumm D, Hong S, Song M. Enhancement of the hydrogen storage characteristics of Mg by reactive mechanical grinding with Ni, Fe and Ti. International Journal of Hydrogen Energy 2008;33(17):4586-4592. https://doi.org/10.1016/j.ijhydene.2008.05.097

Denys R, Riabov A, Maehlen J, Lototsky M, Solberg J, Yartys V. In situ synchrotron X-ray diffraction studies of hydrogen desorption and absorption properties of Mg and Mg–Mm–Ni after reactive ball milling in hydrogen. Acta Materialia 2009;57(13):3989-4000. https://doi.org/10.1016/j.actamat.2009.05.004

Bambhaniya K, Grewal G, Shrinet V, Singh N, Govindan T. Fast hydriding Mg–Zr–Mn–Ni alloy compositions for high capacity hydrogen storage application. International Journal of Hydrogen Energy 2012;37(4):3671-3676. https://doi.org/10.1016/j.ijhydene.2011.04.099

Dobrovol’s’kyi V, Ershova O, Solonin Y. Thermal Resistance and the Kinetics of Hydrogen Desorption from Hydrides of the Mg–Al–Ni–Ti Mechanical Alloy. Materials Science 2016;51(4):457-464. https://doi.org/10.1007/s11003-016-9862-z

V.D. Dobrovolsky, O.G.Ershova , Y.M.Solonin andA.Y. Koval, “Thermal stability and kinetics of hydrogen desorption from MgH2 phase of mechanical alloyMg +10 % wt. Al +10 % wt.Ti”, Vidnovlyuvana Energetika, Vol. 3, pp. 5 -12, 2015 (Ukraine).

Dobrovolsky V, Ershova O, Solonin Y, Khyzhun O. Influence of Titanium and Iron Additives to Magnesium on Hydrogen-Sorption Properties, Thermal Stability, and Kinetics of Hydrogen Desorption from MgH2 Phase of Mechanical Alloy. Powder Metallurgy and Metal Ceramics 2016;55(7-8):477-488. https://doi.org/10.1007/s11106-016-9830-z

V.D. Dobrovolsky, O.G.Ershova , Y.M.Solonin andA.Y. Koval “Influence Al and Fe upon thermal stability and kinetics of hydrogen desorption from MgH2 phase of mechanical alloy”, Physics and Chemistry of solid state, Vol. 16, No3, pp. 576-585, 2015 (Ukraine).

Floriano R, Leiva D, Dessi J, Asselli A, Jorge Junior A, Botta W. Mg-based Nanocomposites for Hydrogen Storage Containing Ti-Cr-V Alloys as Additives. Materials Research 2016;19(suppl 1):80-85. https://doi.org/10.1590/1980-5373-mr-2016-0179

Ershova O, Dobrovolsky V, Solonin Y, Khyzhun O, Koval A. The effect of Al on thermal stability and kinetics of decomposition of MgH2 prepared by mechanochemical reaction at different conditions. Materials Chemistry and Physics 2015;162:408-416. https://doi.org/10.1016/j.matchemphys.2015.06.007

Bououdina M, Guo Z. Comparative study of mechanical alloying of (Mg+Al) and (Mg+Al+Ni) mixtures for hydrogen storage. Journal of Alloys and Compounds 2002;336(1-2):222-231. https://doi.org/10.1016/s0925-8388(01)01856-4

Tanniru M, Slattery D, Ebrahimi F. A study of stability of MgH2 in Mg–8at%Al alloy powder. International Journal of Hydrogen Energy 2010;35(8):3555-3564. https://doi.org/10.1016/j.ijhydene.2010.01.109

Tanniru M, Slattery D, Ebrahimi F. A study of phase transformations during the development of pressure-composition-isotherms for electrodeposited Mg–Al alloys. International Journal of Hydrogen Energy 2011;36(1):639-647. https://doi.org/10.1016/j.ijhydene.2010.09.083

Zhou C, Fang Z, Lu J, Luo X, Ren C, Fan P, Ren Y, Zhang X. Thermodynamic Destabilization of Magnesium Hydride Using Mg-Based Solid Solution Alloys. The Journal of Physical Chemistry C 2014;118(22):11526-11535. https://doi.org/10.1021/jp501306w

Bouaricha S, Dodelet J, Guay D, Huot J, Boily S, Schulz R. Hydriding behavior of Mg–Al and leached Mg–Al compounds prepared by high-energy ball-milling. Journal of Alloys and Compounds 2000;297(1-2):282-293. https://doi.org/10.1016/s0925-8388(99)00612-x

Li Z, Liu X, Jiang L, Wang S. Characterization of Mg–20wt% Ni–Y hydrogen storage composite prepared by reactive mechanical alloying. International Journal of Hydrogen Energy 2007;32(12):1869-1874. https://doi.org/10.1016/j.ijhydene.2006.09.022

Shahi R, Tiwari A, Shaz M, Srivastava O. Studies on de/rehydrogenation characteristics of nanocrystalline MgH2 co-catalyzed with Ti, Fe and Ni. International Journal of Hydrogen Energy 2013;38(6):2778-2784. https://doi.org/10.1016/j.ijhydene.2012.11.073

WANG Y, ZENG X, ZOU J, LI D, WU X, DING W. Microstructure characterization and hydrogen desorption behaviors of Mg–Al–H powders prepared by reactive milling in hydrogen. Transactions of Nonferrous Metals Society of China 2013;23(10):3112-3118. https://doi.org/10.1016/s1003-6326(13)62841-1

Stampfer J, Holley C, Suttle J. The Magnesium-Hydrogen System1-3. Journal of the American Chemical Society 1960;82(14):3504-3508. https://doi.org/10.1021/ja01499a006

Bambhaniya K, Grewal G, Shrinet V, Singh N, Govindan T. Fast hydriding Mg–Zr–Mn–Ni alloy compositions for high capacity hydrogen storage application. International Journal of Hydrogen Energy 2012;37(4):3671-3676. https://doi.org/10.1016/j.ijhydene.2011.04.099

Liu H, Wang X, Liu Y, Dong Z, Li S, Ge H, Yan M. Microstructures and Hydrogen Desorption Properties of the MgH2–AlH3 Composite with NbF5 Addition. The Journal of Physical Chemistry C 2014;118(33):18908-18916. https://doi.org/10.1021/jp505064s

Liu H, Wang X, Liu Y, Dong Z, Cao G, Li S, Yan M. Improved hydrogen storage properties of MgH2 by ball milling with AlH3: preparations, de/rehydriding properties, and reaction mechanisms. Journal of Materials Chemistry A 2013;1(40):12527. https://doi.org/10.1039/c3ta11953j

Zhou C, Fang Z, Ren C, Li J, Lu J. Effect of Ti Intermetallic Catalysts on Hydrogen Storage Properties of Magnesium Hydride. The Journal of Physical Chemistry C 2013;117(25):12973-12980. https://doi.org/10.1021/jp402770p

Santos S, Ishikawa T, Botta W, Huot J. MgH2 + FeNb nanocomposites for hydrogen storage. Materials Chemistry and Physics 2014;147(3):557-562. https://doi.org/10.1016/j.matchemphys.2014.05.031

Yu H, Bennici S, Auroux A. Hydrogen storage and release: Kinetic and thermodynamic studies of MgH2 activated by transition metal nanoparticles. International Journal of Hydrogen Energy 2014;39(22):11633-11641. https://doi.org/10.1016/j.ijhydene.2014.05.069

M. Shimada, H. E. Tamaki and H. Inoue, “Kinetic analysis for hydrogen absorption and desorption of MgH2 – based composites”, Materials and Chemical Engineering, Vol. 2, no 3, pp. 64 – 71, 2014.

Zhu M, Lu Y, Ouyang L, Wang H. Thermodynamic Tuning of Mg-Based Hydrogen Storage Alloys: A Review. Materials 2013;6(10):4654-4674. https://doi.org/10.3390/ma6104654

Dobrovolsky V, Ershova O, Khyzhun O, Solonin Y. Influence of Exposure to Air and Mechanical Dispersion upon Thermal Stability and Decomposition Temperature of β-MgH2 Phase, a Component of Composites Derived by Different Methods. Current Physical Chemistry 2014;4(1):106-113. https://doi.org/10.2174/1877946803666131213232050

V.D. Dobrovolsky, О.G. Ershova andY.M. Solonin, “Investigation the impact of obtaining MgH2 and its exposing in the open air on its thermal stability and hydrogen desorption kinetics”, Vidnovlyuvana Energetika, No 1, pp.14 -22, 2015 (Ukraine).

Zhou C, Fang Z, Lu J, Zhang X. Thermodynamic and Kinetic Destabilization of Magnesium Hydride Using Mg–In Solid Solution Alloys. Journal of the American Chemical Society 2013;135(30):10982-10985. https://doi.org/10.1021/ja4058794

Luo F, Wang H, Ouyang L, Zeng M, Liu J, Zhu M. Enhanced reversible hydrogen storage properties of a Mg–In–Y ternary solid solution. International Journal of Hydrogen Energy 2013;38(25):10912-10918. https://doi.org/10.1016/j.ijhydene.2013.03.007

Ouyang L, Cao Z, Wang H, Liu J, Sun D, Zhang Q, Zhu M. Enhanced dehydriding thermodynamics and kinetics in Mg(In)–MgF2 composite directly synthesized by plasma milling. Journal of Alloys and Compounds 2014;586:113-117. https://doi.org/10.1016/j.jallcom.2013.10.029

Cao Z, Ouyang L, Wu Y, Wang H, Liu J, Fang F, Sun D, Zhang Q, Zhu M. Dual-tuning effects of In, Al, and Ti on the thermodynamics and kinetics of Mg 85 In 5 Al 5 Ti 5 alloy synthesized by plasma milling. Journal of Alloys and Compounds 2015;623:354-358. https://doi.org/10.1016/j.jallcom.2014.10.200

Delhomme B, Lanzini A, Ortigoza-Villalba G, Nachev S, de Rango P, Santarelli M, Marty P, Leone P. Coupling and thermal integration of a solid oxide fuel cell with a magnesium hydride tank. International Journal of Hydrogen Energy 2013;38(11):4740-4747. https://doi.org/10.1016/j.ijhydene.2013.01.140

Lototskyy M, Tolj I, Pickering L, Sita C, Barbir F, Yartys V. The use of metal hydrides in fuel cell applications. Progress in Natural Science: Materials International 2017;27(1):3-20. https://doi.org/10.1016/j.pnsc.2017.01.008

Downloads

Published

2018-07-24