Influence of Indifferent Electrolytes on Formation of Coagulative Structures in Aqueous Silica Dispersions
DOI:
https://doi.org/10.17721/fujcV5I2P40-48Keywords:
silica dispersions, indifferent electrolytes, particle size distribution, rheological propertiesAbstract
Effects of indifferent electrolytes (NaCl, KCl, LiCl, NaI, NaNO3, CaCl2, and MgCl2) on the electrical double layer (EDL), aggregation, gelling, and rheological properties of aqueous dispersions of nanosilica were investigated. All examined indifferent electrolytes enhance interactions between nanoparticles of fumed silica through the coagulation mechanism. The critical concentration of gelation and gelling time decrease in the presence of the electrolytes, while the effective viscosity of the dispersions and average size of aggregates (Def) increase in series of chlorides: Li+ < Na+ < K+ < Ca2+ < Mg2+. That corresponds to an increase in the cation radius and reduction of the hydration shell. The nature of anions and cations significantly affects the values of Def and viscosity. For sodium salts, the viscosity increases in series I- < NO3- < Cl- corresponding to an increase in the hydration shell.
References
Chuiko AA (Ed.) Medical Chemistry and Clinical Application of Silicon Dioxide. Kiev: Naukova Dumka; 2003 (in Russian).
Blitz JP, Gun'ko VM (Eds.) Surface Chemistry in Biomedical and Environmental Science, NATO Science Series II: Mathematics, Physics and Chemistry, Vol. 228. Dordrecht: Springer; 2006. https://doi.org/10.1007/1-4020-4741-x
Gun’ko V, Andriyko L, Zarko V, Marynin A, Olishevskyi V, Janusz W. Effects of dissolved metal chlorides on the behavior of silica nanoparticles in aqueous media. Central European Journal of Chemistry 2014;12(4):480-491. https://doi.org/10.2478/s11532-013-0386-1
Iler RK. The Chemistry of Silica. NY: Wiley Interscience; 1979.
Kosmulski M. Positive Electrokinetic Charge of Silica in the Presence of Chlorides. Journal of Colloid and Interface Science 1998;208(2):543-545. https://doi.org/10.1006/jcis.1998.5859
Pfeiffer C, Rehbock C, Huhn D, Carrillo-Carrion C, de Aberasturi D, Merk V, Barcikowski S, Parak W. Interaction of colloidal nanoparticles with their local environment: the (ionic) nanoenvironment around nanoparticles is different from bulk and determines the physico-chemical properties of the nanoparticles. Journal of The Royal Society Interface 2014;11(96):20130931-20130931. https://doi.org/10.1098/rsif.2013.0931
Kosmulski M, Rosenholm J. High ionic strength electrokinetics. Advances in Colloid and Interface Science 2004;112(1-3):93-107. https://doi.org/10.1016/j.cis.2004.09.005
Franks G. Zeta Potentials and Yield Stresses of Silica Suspensions in Concentrated Monovalent Electrolytes: Isoelectric Point Shift and Additional Attraction. Journal of Colloid and Interface Science 2002;249(1):44-51. https://doi.org/10.1006/jcis.2002.8250
Depasse J, Watillon A. The stability of amorphous colloidal silica. Journal of Colloid and Interface Science 1970;33(3):430-438. https://doi.org/10.1016/0021-9797(70)90235-3
Depasse J. Coagulation of Colloidal Silica by Alkaline Cations: Surface Dehydration or Interparticle Bridging?. Journal of Colloid and Interface Science 1997;194(1):260-262. https://doi.org/10.1006/jcis.1997.5120
Depasse J. Simple Experiments to Emphasize the Main Characteristics of the Coagulation of Silica Hydrosols by Alkaline Cations: Application to the Analysis of the Model of Colic et al.. Journal of Colloid and Interface Science 1999;220(1):174-176. https://doi.org/10.1006/jcis.1999.6594
Kosmulski M. The Electrokinetic Behavior of Amorphous Silica (Ludox) in KCl Solutions. Journal of Colloid and Interface Science 2001;242(1):277. https://doi.org/10.1006/jcis.2001.7876
Milonjić S, Čerović L, Čokeša D, Zec S. The influence of cationic impurities in silica on its crystallization and point of zero charge. Journal of Colloid and Interface Science 2007;309(1):155-159. https://doi.org/10.1016/j.jcis.2006.12.033
Hunter RJ. Zeta potential in Colloid Science: Principles and Applications. Ottewill RH, Rowell RL (Ed.) Academic Press; 1988.
Healy TW. ACSAdvances in Chemistry Series No. 234. Bergna HE (Ed), Am. Chem. Soc., Washington DC, 1994, p. 147.
Chuiko AA. (Ed.), Silica surface chemistry. Kiev: Naukova Dumka; 2001 (in Russian).
Lyklema J. (Ed.) Fundamentals of Interface and Colloid Science. Vol. 1. London: Academic Press; 1991.
Lyklema J. (Ed.) Fundamentals of Interface and Colloid Science. Vol. 2. London: Academic Press; 1995.
Salis A, Ninham B. Models and mechanisms of Hofmeister effects in electrolyte solutions, and colloid and protein systems revisited. Chem. Soc. Rev. 2014;43(21):7358-7377. https://doi.org/10.1039/c4cs00144c
Zangi R. Can Salting-In/Salting-Out Ions be Classified as Chaotropes/Kosmotropes?. The Journal of Physical Chemistry B 2010;114(1):643-650. https://doi.org/10.1021/jp909034c
Malvern Instruments [homepage on the Internet]. 2017. Available from: https://www.malvern.com
Gun'ko V, Zarko V, Leboda R, Chibowski E. Aqueous suspension of fumed oxides: particle size distribution and zeta potential. Advances in Colloid and Interface Science 2001;91(1):1-112. https://doi.org/10.1016/s0001-8686(99)00026-3
Gun'ko V, Mironyuk I, Zarko V, Voronin E, Turov V, Pakhlov E, Goncharuk E, Nychiporuk Y, Vlasova N, Gorbik P, Mishchuk O, Chuiko A, Kulik T, Palyanytsya B, Pakhovchishin S, Skubiszewska-Zięba J, Janusz W, Turov A, Leboda R. Morphology and surface properties of fumed silicas. Journal of Colloid and Interface Science 2005;289(2):427-445. https://doi.org/10.1016/j.jcis.2005.05.051
Gun'ko V, Mironyuk I, Zarko V, Turov V, Voronin E, Pakhlov E, Goncharuk E, Leboda R, Skubiszewska-Ziȩba J, Janusz W, Chibowski S, Levchuk Y, Klyueva A. Fumed Silicas Possessing Different Morphology and Hydrophilicity. Journal of Colloid and Interface Science 2001;242(1):90-103. https://doi.org/10.1006/jcis.2001.7736
Eggersdorfer M, Kadau D, Herrmann H, Pratsinis S. Aggregate morphology evolution by sintering: Number and diameter of primary particles. Journal of Aerosol Science 2012;46:7-19. https://doi.org/10.1016/j.jaerosci.2011.11.005
Uriev NB. Technology of dispersed systems and materials: physicochemical dynamics of structure formation and rheology. Wiley; 2016 https://doi.org/10.1002/9783527806195
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).