Sulfonyl-bridged Calix[4]arene as an Inhibitor of Protein Tyrosine Phosphatases
DOI:
https://doi.org/10.17721/fujcV5I2P144-151Keywords:
sulfonylcalix[4]arene, protein tyrosine phosphatase MEG2, PTP1B, inhibition, molecular dockingAbstract
Previously, phosphonic acid derivatives of calix[4]arene and thiacalix[4]arene were found to be potential inhibitors of protein tyrosine phosphatase 1B. In the present paper, the inhibitory activity of unsubstituted sulfonyl-bridget calix[4]arene towards some of the therapeutically important protein tyrosine phosphatases has been established. The obtained results showed that the sulfonylcalix[4]arene is able to inhibit protein tyrosine phosphatase MEG2 with IC50 value in the micromolar range. At the same time, the inhibitor demonstrated lower activity in case of other protein tyrosine phosphatases such as PTP1B, MEG1, TC-PTP, SHP2, and PTPβ. The performed molecular docking indicated that the inhibitor binds to the active site region of MEG2 and PTP1B with WPD-loop in the open conformation.
References
Alonso A, Sasin J, Bottini N, Friedberg I, Friedberg I, Osterman A, Godzik A, Hunter T, Dixon J, Mustelin T. Protein Tyrosine Phosphatases in the Human Genome. Cell 2004;117(6):699-711. https://doi.org/10.1016/j.cell.2004.05.018
Zhang Z. PROTEIN TYROSINE PHOSPHATASES: Structure and Function, Substrate Specificity, and Inhibitor Development. Annual Review of Pharmacology and Toxicology 2002;42(1):209-234. https://doi.org/10.1146/annurev.pharmtox.42.083001.144616
Elchebly M. Increased Insulin Sensitivity and Obesity Resistance in Mice Lacking the Protein Tyrosine Phosphatase-1B Gene. Science 1999;283(5407):1544-1548. https://doi.org/10.1126/science.283.5407.1544
Lund I. Mechanism of protein tyrosine phosphatase 1B-mediated inhibition of leptin signalling. Journal of Molecular Endocrinology 2005;34(2):339-351. https://doi.org/10.1677/jme.1.01694
Galic S, Hauser C, Kahn B, Haj F, Neel B, Tonks N, Tiganis T. Coordinated Regulation of Insulin Signaling by the Protein Tyrosine Phosphatases PTP1B and TCPTP. Molecular and Cellular Biology 2005;25(2):819-829. https://doi.org/10.1128/mcb.25.2.819-829.2005
Chistiakov D, Chistiakova E. T-cell protein tyrosine phosphatase: A role in inflammation and autoimmunity. International Journal of Diabetes Mellitus 2010;2(2):114-118. https://doi.org/10.1016/j.ijdm.2010.05.012
Wang S, Yu W, Zhang W, McCrae K, Neel B, Qu C. Noonan Syndrome/Leukemia-associated Gain-of-function Mutations in SHP-2 Phosphatase (PTPN11) Enhance Cell Migration and Angiogenesis. Journal of Biological Chemistry 2008;284(2):913-920. https://doi.org/10.1074/jbc.m804129200
Aceto N, Sausgruber N, Brinkhaus H, Gaidatzis D, Martiny-Baron G, Mazzarol G, Confalonieri S, Quarto M, Hu G, Balwierz P, Pachkov M, Elledge S, van Nimwegen E, Stadler M, Bentires-Alj M. Tyrosine phosphatase SHP2 promotes breast cancer progression and maintains tumor-initiating cells via activation of key transcription factors and a positive feedback signaling loop. Nature Medicine 2012;18(4):529-537. https://doi.org/10.1038/nm.2645
Yuan T, Wang Y, Zhao Z, Gu H. Protein-tyrosine Phosphatase PTPN9 Negatively Regulates ErbB2 and Epidermal Growth Factor Receptor Signaling in Breast Cancer Cells. Journal of Biological Chemistry 2010;285(20):14861-14870. https://doi.org/10.1074/jbc.m109.099879
Hao Q, Samten B, Ji H, Zhao Z, Tang H. Tyrosine phosphatase PTP-MEG2 negatively regulates vascular endothelial growth factor receptor signaling and function in endothelial cells. AJP: Cell Physiology 2012;303(5):C548-C553. https://doi.org/10.1152/ajpcell.00415.2011
Zhang S, Liu S, Tao R, Wei D, Chen L, Shen W, Yu Z, Wang L, Jones D, Dong X, Zhang Z. A Highly Selective and Potent PTP-MEG2 Inhibitor with Therapeutic Potential for Type 2 Diabetes. Journal of the American Chemical Society 2012;134(43):18116-18124. https://doi.org/10.1021/ja308212y
Vintonyak V, Antonchick A, Rauh D, Waldmann H. The therapeutic potential of phosphatase inhibitors. Current Opinion in Chemical Biology 2009;13(3):272-283. https://doi.org/10.1016/j.cbpa.2009.03.021
Barr A. Protein tyrosine phosphatases as drug targets: strategies and challenges of inhibitor development. Future Medicinal Chemistry 2010;2(10):1563-1576. https://doi.org/10.4155/fmc.10.241
Sansone F, Segura M, Ungaro R. Calixarenes in Bioogranic and Biomimetic Chemistry. Calixarenes 2001 ;:496-512. https://doi.org/10.1007/0-306-47522-7_27
Tauran Y, Coleman A, Perret F, Kim B. Cellular and in Vivo Biological Activities of the Calix[n]arenes. Current Organic Chemistry 2015;19(23):2250-2270. https://doi.org/10.2174/1385272819666150608222114
Nimse S, Kim T. Biological applications of functionalized calixarenes. Chem. Soc. Rev. 2013;42(1):366-386. https://doi.org/10.1039/c2cs35233h
Rodik R, Boyko V, Kalchenko V. Calixarenes in Bio-Medical Researches. Current Medicinal Chemistry 2009;16(13):1630-1655. https://doi.org/10.2174/092986709788186219
Miller-Shakesby D, Burke B, Nigam S, Stasiuk G, Prior T, Archibald S, Redshaw C. Synthesis, structures and cytotoxicity studies of p-sulfonatocalix[4]arene lanthanide complexes. CrystEngComm 2016;18(26):4977-4987. https://doi.org/10.1039/c6ce00209a
Rodik R, Anthony A, Kalchenko V, Mély Y, Klymchenko A. Cationic amphiphilic calixarenes to compact DNA into small nanoparticles for gene delivery. New Journal of Chemistry 2015;39(3):1654-1664. https://doi.org/10.1039/c4nj01395f
Dibama H, Clarot I, Fontanay S, Salem A, Mourer M, Finance C, Duval R, Regnouf-de-Vains J. Towards calixarene-based prodrugs: Drug release and antibacterial behaviour of a water-soluble nalidixic acid/calix[4]arene ester adduct. Bioorganic & Medicinal Chemistry Letters 2009;19(10):2679-2682. https://doi.org/10.1016/j.bmcl.2009.03.139
Patel M, Modi N, Raval J, Menon S. Calix[4]arene based 1,3,4-oxadiazole and thiadiazole derivatives: Design, synthesis, and biological evaluation. Organic & Biomolecular Chemistry 2012;10(9):1785. https://doi.org/10.1039/c2ob06730g
Tsou L, Dutschman G, Gullen E, Telpoukhovskaia M, Cheng Y, Hamilton A. Discovery of a synthetic dual inhibitor of HIV and HCV infection based on a tetrabutoxy-calix[4]arene scaffold. Bioorganic & Medicinal Chemistry Letters 2010;20(7):2137-2139. https://doi.org/10.1016/j.bmcl.2010.02.043
Mourer M, Psychogios N, Laumond G, Aubertin A, Regnouf-de-Vains J. Synthesis and anti-HIV evaluation of water-soluble calixarene-based bithiazolyl podands. Bioorganic & Medicinal Chemistry 2010;18(1):36-45. https://doi.org/10.1016/j.bmc.2009.11.016
Yousaf A, Hamid SA, Bunnori NM, Ishola AA. Applications of calixarenes in cancer chemotherapy: facts and perspectives. Drug Des. Dev. Ther. 2015;9:2831-2838.
Santos D, Medeiros-Silva J, Cegonho S, Alves E, Ramilo-Gomes F, Santos A, Silvestre S, Cruz C. Cell proliferation effects of calix[4]arene derivatives. Tetrahedron 2015;71(40):7593-7599. https://doi.org/10.1016/j.tet.2015.07.077
Shimojo K, Oshima T, Naganawa H, Goto M. Calixarene-Assisted Protein Refolding via Liquid−Liquid Extraction. Biomacromolecules 2007;8(10):3061-3066. https://doi.org/10.1021/bm070418q
Trush V, Cherenok S, Tanchuk V, Kukhar V, Kalchenko V, Vovk A. Calix[4]arene methylenebisphosphonic acids as inhibitors of protein tyrosine phosphatase 1B. Bioorganic & Medicinal Chemistry Letters 2013;23(20):5619-5623. https://doi.org/10.1016/j.bmcl.2013.08.040
Trush V, Tanchuk V, Cherenok S, Kalchenko V, Vovk A. Calix[4]arene α-hydroxymethylphosphonic acids as potential inhibitors of protein tyrosine phosphatases. Žurnal organìčnoï ta farmacevtičnoï hìmìï 2014;12(1(45)):39-42. https://doi.org/10.24959/ophcj.14.782
Trush VV, Tanchuk VY, Cherenok SO, Kalchenko VI, Vovk AI. Evaluation of inhibition of protein tyrosine phosphatase 1B by calixarene-based α-ketophosphonic acids. Chem. Biol. Lett. 2015;2:1-5.
Giuliani M, Morbioli I, Sansone F, Casnati A. Moulding calixarenes for biomacromolecule targeting. Chemical Communications 2015;51(75):14140-14159. https://doi.org/10.1039/c5cc05204a
Trush V, Kharchenko S, Tanchuk V, Kalchenko V, Vovk A. Phosphonate monoesters on a thiacalix[4]arene framework as potential inhibitors of protein tyrosine phosphatase 1B. Organic & Biomolecular Chemistry 2015;13(33):8803-8806. https://doi.org/10.1039/c5ob01247c
Dai F, Wang Z. Modular Assembly of Metal–Organic Supercontainers Incorporating Sulfonylcalixarenes. Journal of the American Chemical Society 2012;134(19):8002-8005. https://doi.org/10.1021/ja300095j
Gutsche C, Dhawan B, No K, Muthukrishnan R. Calixarenes. 4. The synthesis, characterization, and properties of the calixarenes from p-tert-butylphenol. Journal of the American Chemical Society 1981;103(13):3782-3792. https://doi.org/10.1021/ja00403a028
Kumagai H, Hasegawa M, Miyanari S, Sugawa Y, Sato Y, Hori T, Ueda S, Kamiyama H, Miyano S. Facile synthesis of p-tert-butylthiacalix[4]arene by the reaction of p-tert-butylphenol with elemental sulfur in the presence of a base. Tetrahedron Letters 1997;38(22):3971-3972. https://doi.org/10.1016/s0040-4039(97)00792-2
Iki N, Kumagai H, Morohashi N, Ejima K, Hasegawa M, Miyanari S, Miyano S. Selective oxidation of thiacalix[4]arenes to the sulfinyl- and sulfonylcalix[4]arenes and their coordination ability to metal ions. Tetrahedron Letters 1998;39(41):7559-7562. https://doi.org/10.1016/s0040-4039(98)01645-1
Kyte J, Doolittle R. A simple method for displaying the hydropathic character of a protein. Journal of Molecular Biology 1982;157(1):105-132. https://doi.org/10.1016/0022-2836(82)90515-0
Trott O, Olson A. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry 2009;31:455 - 461. https://doi.org/10.1002/jcc.21334
Tanchuk V, Tanin V, Vovk A. Classification of Binding Site Conformations of Protein Tyrosine Phosphatase 1B. Chemical Biology & Drug Design 2012;80(1):121-128. https://doi.org/10.1111/j.1747-0285.2012.01370.x
Hanwell M, Curtis D, Lonie D, Vandermeersch T, Zurek E, Hutchison G. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. Journal of Cheminformatics 2012;4(1):17. https://doi.org/10.1186/1758-2946-4-17
Huey R, Morris G, Olson A, Goodsell D. A semiempirical free energy force field with charge-based desolvation. Journal of Computational Chemistry 2007;28(6):1145-1152. https://doi.org/10.1002/jcc.20634
Andersen J, Mortensen O, Peters G, Drake P, Iversen L, Olsen O, Jansen P, Andersen H, Tonks N, Moller N. Structural and Evolutionary Relationships among Protein Tyrosine Phosphatase Domains. Molecular and Cellular Biology 2001;21(21):7117-7136. https://doi.org/10.1128/mcb.21.21.7117-7136.2001
Tautz L, Critton D, Grotegut S. Protein Tyrosine Phosphatases: Structure, Function, and Implication in Human Disease. Methods in Molecular Biology 2013;:179-221. https://doi.org/10.1007/978-1-62703-562-0_13
Kamerlin S, Rucker R, Boresch S. A targeted molecular dynamics study of WPD loop movement in PTP1B. Biochemical and Biophysical Research Communications 2006;345(3):1161-1166. https://doi.org/10.1016/j.bbrc.2006.04.181
Wanno B, Sang-aroon W, Tuntulani T, Polpoka B, Ruangpornvisuti V. Conformational and energetical structures of sulfonylcalix[4]arene, p-tert-butylsulfonylcalix[4]arene and their zinc complexes. Journal of Molecular Structure: THEOCHEM 2003;629(1-3):137-150. https://doi.org/10.1016/s0166-1280(03)00135-0
Gutsche C, Dhawan B, Levine J, Hyun No K, Bauer L. Calixarenes 9. Tetrahedron 1983;39(3):409-426. https://doi.org/10.1016/s0040-4020(01)88541-0
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).