Sulfonyl-bridged Calix[4]arene as an Inhibitor of Protein Tyrosine Phosphatases

Vladyslav Buldenko, Oleksandr Kobzar, Viacheslav Trush, Andriy Drapailo, Vitaly Kalchenko, Andriy Vovk

Abstract


Previously, phosphonic acid derivatives of calix[4]arene and thiacalix[4]arene were found to be potential inhibitors of protein tyrosine phosphatase 1B. In the present paper, the inhibitory activity of unsubstituted sulfonyl-bridget calix[4]arene towards some of the therapeutically important protein tyrosine phosphatases has been established. The obtained results showed that the sulfonylcalix[4]arene is able to inhibit protein tyrosine phosphatase MEG2 with IC50 value in the micromolar range. At the same time, the inhibitor demonstrated lower activity in case of other protein tyrosine phosphatases such as PTP1B, MEG1, TC-PTP, SHP2, and PTPβ. The performed molecular docking indicated that the inhibitor binds to the active site region of MEG2 and PTP1B with WPD-loop in the open conformation.


Keywords


sulfonylcalix[4]arene; protein tyrosine phosphatase MEG2; PTP1B; inhibition; molecular docking

Full Text:

PDF

References


Alonso A, Sasin J, Bottini N, Friedberg I, Friedberg I, Osterman A, Godzik A, Hunter T, Dixon J, Mustelin T. Protein Tyrosine Phosphatases in the Human Genome. Cell 2004;117(6):699-711. https://doi.org/10.1016/j.cell.2004.05.018

Zhang Z. PROTEIN TYROSINE PHOSPHATASES: Structure and Function, Substrate Specificity, and Inhibitor Development. Annual Review of Pharmacology and Toxicology 2002;42(1):209-234. https://doi.org/10.1146/annurev.pharmtox.42.083001.144616

Elchebly M. Increased Insulin Sensitivity and Obesity Resistance in Mice Lacking the Protein Tyrosine Phosphatase-1B Gene. Science 1999;283(5407):1544-1548. https://doi.org/10.1126/science.283.5407.1544

Lund I. Mechanism of protein tyrosine phosphatase 1B-mediated inhibition of leptin signalling. Journal of Molecular Endocrinology 2005;34(2):339-351. https://doi.org/10.1677/jme.1.01694

Galic S, Hauser C, Kahn B, Haj F, Neel B, Tonks N, Tiganis T. Coordinated Regulation of Insulin Signaling by the Protein Tyrosine Phosphatases PTP1B and TCPTP. Molecular and Cellular Biology 2005;25(2):819-829. https://doi.org/10.1128/mcb.25.2.819-829.2005

Chistiakov D, Chistiakova E. T-cell protein tyrosine phosphatase: A role in inflammation and autoimmunity. International Journal of Diabetes Mellitus 2010;2(2):114-118. https://doi.org/10.1016/j.ijdm.2010.05.012

Wang S, Yu W, Zhang W, McCrae K, Neel B, Qu C. Noonan Syndrome/Leukemia-associated Gain-of-function Mutations in SHP-2 Phosphatase (PTPN11) Enhance Cell Migration and Angiogenesis. Journal of Biological Chemistry 2008;284(2):913-920. https://doi.org/10.1074/jbc.m804129200

Aceto N, Sausgruber N, Brinkhaus H, Gaidatzis D, Martiny-Baron G, Mazzarol G, Confalonieri S, Quarto M, Hu G, Balwierz P, Pachkov M, Elledge S, van Nimwegen E, Stadler M, Bentires-Alj M. Tyrosine phosphatase SHP2 promotes breast cancer progression and maintains tumor-initiating cells via activation of key transcription factors and a positive feedback signaling loop. Nature Medicine 2012;18(4):529-537. https://doi.org/10.1038/nm.2645

Yuan T, Wang Y, Zhao Z, Gu H. Protein-tyrosine Phosphatase PTPN9 Negatively Regulates ErbB2 and Epidermal Growth Factor Receptor Signaling in Breast Cancer Cells. Journal of Biological Chemistry 2010;285(20):14861-14870. https://doi.org/10.1074/jbc.m109.099879

Hao Q, Samten B, Ji H, Zhao Z, Tang H. Tyrosine phosphatase PTP-MEG2 negatively regulates vascular endothelial growth factor receptor signaling and function in endothelial cells. AJP: Cell Physiology 2012;303(5):C548-C553. https://doi.org/10.1152/ajpcell.00415.2011

Zhang S, Liu S, Tao R, Wei D, Chen L, Shen W, Yu Z, Wang L, Jones D, Dong X, Zhang Z. A Highly Selective and Potent PTP-MEG2 Inhibitor with Therapeutic Potential for Type 2 Diabetes. Journal of the American Chemical Society 2012;134(43):18116-18124. https://doi.org/10.1021/ja308212y

Vintonyak V, Antonchick A, Rauh D, Waldmann H. The therapeutic potential of phosphatase inhibitors. Current Opinion in Chemical Biology 2009;13(3):272-283. https://doi.org/10.1016/j.cbpa.2009.03.021

Barr A. Protein tyrosine phosphatases as drug targets: strategies and challenges of inhibitor development. Future Medicinal Chemistry 2010;2(10):1563-1576. https://doi.org/10.4155/fmc.10.241

Sansone F, Segura M, Ungaro R. Calixarenes in Bioogranic and Biomimetic Chemistry. Calixarenes 2001 ;:496-512. https://doi.org/10.1007/0-306-47522-7_27

Tauran Y, Coleman A, Perret F, Kim B. Cellular and in Vivo Biological Activities of the Calix[n]arenes. Current Organic Chemistry 2015;19(23):2250-2270. https://doi.org/10.2174/1385272819666150608222114

Nimse S, Kim T. Biological applications of functionalized calixarenes. Chem. Soc. Rev. 2013;42(1):366-386. https://doi.org/10.1039/c2cs35233h

Rodik R, Boyko V, Kalchenko V. Calixarenes in Bio-Medical Researches. Current Medicinal Chemistry 2009;16(13):1630-1655. https://doi.org/10.2174/092986709788186219

Miller-Shakesby D, Burke B, Nigam S, Stasiuk G, Prior T, Archibald S, Redshaw C. Synthesis, structures and cytotoxicity studies of p-sulfonatocalix[4]arene lanthanide complexes. CrystEngComm 2016;18(26):4977-4987. https://doi.org/10.1039/c6ce00209a

Rodik R, Anthony A, Kalchenko V, Mély Y, Klymchenko A. Cationic amphiphilic calixarenes to compact DNA into small nanoparticles for gene delivery. New Journal of Chemistry 2015;39(3):1654-1664. https://doi.org/10.1039/c4nj01395f

Dibama H, Clarot I, Fontanay S, Salem A, Mourer M, Finance C, Duval R, Regnouf-de-Vains J. Towards calixarene-based prodrugs: Drug release and antibacterial behaviour of a water-soluble nalidixic acid/calix[4]arene ester adduct. Bioorganic & Medicinal Chemistry Letters 2009;19(10):2679-2682. https://doi.org/10.1016/j.bmcl.2009.03.139

Patel M, Modi N, Raval J, Menon S. Calix[4]arene based 1,3,4-oxadiazole and thiadiazole derivatives: Design, synthesis, and biological evaluation. Organic & Biomolecular Chemistry 2012;10(9):1785. https://doi.org/10.1039/c2ob06730g

Tsou L, Dutschman G, Gullen E, Telpoukhovskaia M, Cheng Y, Hamilton A. Discovery of a synthetic dual inhibitor of HIV and HCV infection based on a tetrabutoxy-calix[4]arene scaffold. Bioorganic & Medicinal Chemistry Letters 2010;20(7):2137-2139. https://doi.org/10.1016/j.bmcl.2010.02.043

Mourer M, Psychogios N, Laumond G, Aubertin A, Regnouf-de-Vains J. Synthesis and anti-HIV evaluation of water-soluble calixarene-based bithiazolyl podands. Bioorganic & Medicinal Chemistry 2010;18(1):36-45. https://doi.org/10.1016/j.bmc.2009.11.016

Yousaf A, Hamid SA, Bunnori NM, Ishola AA. Applications of calixarenes in cancer chemotherapy: facts and perspectives. Drug Des. Dev. Ther. 2015;9:2831-2838.

Santos D, Medeiros-Silva J, Cegonho S, Alves E, Ramilo-Gomes F, Santos A, Silvestre S, Cruz C. Cell proliferation effects of calix[4]arene derivatives. Tetrahedron 2015;71(40):7593-7599. https://doi.org/10.1016/j.tet.2015.07.077

Shimojo K, Oshima T, Naganawa H, Goto M. Calixarene-Assisted Protein Refolding via Liquid−Liquid Extraction. Biomacromolecules 2007;8(10):3061-3066. https://doi.org/10.1021/bm070418q

Trush V, Cherenok S, Tanchuk V, Kukhar V, Kalchenko V, Vovk A. Calix[4]arene methylenebisphosphonic acids as inhibitors of protein tyrosine phosphatase 1B. Bioorganic & Medicinal Chemistry Letters 2013;23(20):5619-5623. https://doi.org/10.1016/j.bmcl.2013.08.040

Trush V, Tanchuk V, Cherenok S, Kalchenko V, Vovk A. Calix[4]arene α-hydroxymethylphosphonic acids as potential inhibitors of protein tyrosine phosphatases. Žurnal organìčnoï ta farmacevtičnoï hìmìï 2014;12(1(45)):39-42. https://doi.org/10.24959/ophcj.14.782

Trush VV, Tanchuk VY, Cherenok SO, Kalchenko VI, Vovk AI. Evaluation of inhibition of protein tyrosine phosphatase 1B by calixarene-based α-ketophosphonic acids. Chem. Biol. Lett. 2015;2:1-5.

Giuliani M, Morbioli I, Sansone F, Casnati A. Moulding calixarenes for biomacromolecule targeting. Chemical Communications 2015;51(75):14140-14159. https://doi.org/10.1039/c5cc05204a

Trush V, Kharchenko S, Tanchuk V, Kalchenko V, Vovk A. Phosphonate monoesters on a thiacalix[4]arene framework as potential inhibitors of protein tyrosine phosphatase 1B. Organic & Biomolecular Chemistry 2015;13(33):8803-8806. https://doi.org/10.1039/c5ob01247c

Dai F, Wang Z. Modular Assembly of Metal–Organic Supercontainers Incorporating Sulfonylcalixarenes. Journal of the American Chemical Society 2012;134(19):8002-8005. https://doi.org/10.1021/ja300095j

Gutsche C, Dhawan B, No K, Muthukrishnan R. Calixarenes. 4. The synthesis, characterization, and properties of the calixarenes from p-tert-butylphenol. Journal of the American Chemical Society 1981;103(13):3782-3792. https://doi.org/10.1021/ja00403a028

Kumagai H, Hasegawa M, Miyanari S, Sugawa Y, Sato Y, Hori T, Ueda S, Kamiyama H, Miyano S. Facile synthesis of p-tert-butylthiacalix[4]arene by the reaction of p-tert-butylphenol with elemental sulfur in the presence of a base. Tetrahedron Letters 1997;38(22):3971-3972. https://doi.org/10.1016/s0040-4039(97)00792-2

Iki N, Kumagai H, Morohashi N, Ejima K, Hasegawa M, Miyanari S, Miyano S. Selective oxidation of thiacalix[4]arenes to the sulfinyl- and sulfonylcalix[4]arenes and their coordination ability to metal ions. Tetrahedron Letters 1998;39(41):7559-7562. https://doi.org/10.1016/s0040-4039(98)01645-1

Kyte J, Doolittle R. A simple method for displaying the hydropathic character of a protein. Journal of Molecular Biology 1982;157(1):105-132. https://doi.org/10.1016/0022-2836(82)90515-0

Trott O, Olson A. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry 2009;31:455 - 461. https://doi.org/10.1002/jcc.21334

Tanchuk V, Tanin V, Vovk A. Classification of Binding Site Conformations of Protein Tyrosine Phosphatase 1B. Chemical Biology & Drug Design 2012;80(1):121-128. https://doi.org/10.1111/j.1747-0285.2012.01370.x

Hanwell M, Curtis D, Lonie D, Vandermeersch T, Zurek E, Hutchison G. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. Journal of Cheminformatics 2012;4(1):17. https://doi.org/10.1186/1758-2946-4-17

Huey R, Morris G, Olson A, Goodsell D. A semiempirical free energy force field with charge-based desolvation. Journal of Computational Chemistry 2007;28(6):1145-1152. https://doi.org/10.1002/jcc.20634

Andersen J, Mortensen O, Peters G, Drake P, Iversen L, Olsen O, Jansen P, Andersen H, Tonks N, Moller N. Structural and Evolutionary Relationships among Protein Tyrosine Phosphatase Domains. Molecular and Cellular Biology 2001;21(21):7117-7136. https://doi.org/10.1128/mcb.21.21.7117-7136.2001

Tautz L, Critton D, Grotegut S. Protein Tyrosine Phosphatases: Structure, Function, and Implication in Human Disease. Methods in Molecular Biology 2013;:179-221. https://doi.org/10.1007/978-1-62703-562-0_13

Kamerlin S, Rucker R, Boresch S. A targeted molecular dynamics study of WPD loop movement in PTP1B. Biochemical and Biophysical Research Communications 2006;345(3):1161-1166. https://doi.org/10.1016/j.bbrc.2006.04.181

Wanno B, Sang-aroon W, Tuntulani T, Polpoka B, Ruangpornvisuti V. Conformational and energetical structures of sulfonylcalix[4]arene, p-tert-butylsulfonylcalix[4]arene and their zinc complexes. Journal of Molecular Structure: THEOCHEM 2003;629(1-3):137-150. https://doi.org/10.1016/s0166-1280(03)00135-0

Gutsche C, Dhawan B, Levine J, Hyun No K, Bauer L. Calixarenes 9. Tetrahedron 1983;39(3):409-426. https://doi.org/10.1016/s0040-4020(01)88541-0




DOI: https://doi.org/10.17721/fujcV5I2P144-151

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

ISSN 2312-3222 (Online)

Creative Commons License
 French-Ukrainian Journal of Chemistry is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2013 French-Ukrainian Journal of Chemistry