N-Phenacylthiazolium Salts as Inhibitors of Cholinesterases
DOI:
https://doi.org/10.17721/fujcV5I2P1-14Keywords:
acetylcholinesterase, butyrylcholinesterase, thiamin, N-phenacylthiazolium salts, inhibitionAbstract
Inhibition of acetylcholinesterase is considered as a promising approach for treatment of neurodegenerative disorders including Alzheimer's disease. In this study, we demonstrated that 5-substituted N-phenacylthiazolium derivatives are capable of inhibiting acetylcholinesterase and butyrylcholinesterase activities with IC50 values in the micromolar range. Some of the new thiazolium-based inhibitiors showed more than 10-fold selectivity for butyrylcholinesterase. Kinetic experiments and molecular docking were performed for understanding the inhibition mechanisms.
References
GIACOBINI E, . Cholinesterase inhibitors: new roles and therapeutic alternatives. Pharmacological Research 2004;50(4):433-440. https://doi.org/10.1016/j.phrs.2003.11.017
Greig N, Utsuki T, Yu Q, Zhu X, Holloway H, Perry T, Lee B, Ingram D, Lahiri D, . A New Therapeutic Target in Alzheimer's Disease Treatment: Attention to Butyrylcholinesterase. Current Medical Research and Opinion 2001;17(3):159-165. https://doi.org/10.1185/03007990152673800
PERRY E, MCKEITH I, THOMPSON P, MARSHALL E, KERWIN J, JABEEN S, EDWARDSON J, Ince P, BLESSED G, IRVING D, PERRY R, . Topography, Extent, and Clinical Relevance of Neurochemical Deficits in Dementia of Lewy Body Type, Parkinson's Disease, and Alzheimer's Disease. Annals of the New York Academy of Sciences 1991;640(1):197-202. https://doi.org/10.1111/j.1749-6632.1991.tb00217.x
Perry E, Gibson P, Blessed G, Perry R, Tomlinson B, . Neurotransmitter enzyme abnormalities in senile dementia. Journal of the Neurological Sciences 1977;34(2):247-265. https://doi.org/10.1016/0022-510x(77)90073-9
Francis P, Palmer A, Snape M, Wilcock G, . The cholinergic hypothesis of Alzheimer's disease: a review of progress. Journal of Neurology, Neurosurgery & Psychiatry 1999;66(2):137-147. https://doi.org/10.1136/jnnp.66.2.137
Whitehouse P, Price D, Struble R, Clark A, Coyle J, Delon M, . Alzheimer's disease and senile dementia: loss of neurons in the basal forebrain. Science 1982;215(4537):1237-1239. https://doi.org/10.1126/science.7058341
Ballard C, Greig N, Guillozet-Bongaarts A, Enz A, Darvesh S, . Cholinesterases: Roles in the Brain During Health and Disease. Current Alzheimer Research 2005;2(3):307-318. https://doi.org/10.2174/1567205054367838
Cummings J, . Cholinesterase Inhibitors: A New Class of Psychotropic Compounds. American Journal of Psychiatry 2000;157(1):4-15. https://doi.org/10.1176/ajp.157.1.4
Bergman J, Lerner V, . Successful Use of Donepezil for the Treatment of Psychotic Symptoms in Patients With Parkinson's Disease. Clinical Neuropharmacology 2002;25(2):107-110. https://doi.org/10.1097/00002826-200203000-00009
Rojas-Fernandez C, . Successful Use of Donepezil for the Treatment of Dementia with Lewy Bodies. Annals of Pharmacotherapy 2001;35(2):202-205. https://doi.org/10.1345/aph.10192
Aarsland D, Mosimann U, McKeith I, . Role of Cholinesterase Inhibitors in Parkinson’s Disease and dementia with Lewy Bodies. Journal of Geriatric Psychiatry and Neurology 2004;17(3):164-171. https://doi.org/10.1177/0891988704267463
Radic Z, Pickering N, Vellom D, Camp S, Taylor P, . Three distinct domains in the cholinesterase molecule confer selectivity for acetyl- and butyrylcholinesterase inhibitors. Biochemistry 1993;32(45):12074-12084. https://doi.org/10.1021/bi00096a018
Schwarz M, Glick D, Loewenstein Y, Soreq H, . Engineering of human cholinesterases explains and predicts diverse consequences of administration of various drugs and poisons. Pharmacology & Therapeutics 1995;67(2):283-322. https://doi.org/10.1016/0163-7258(95)00019-d
Duysen E, Stribley J, Fry D, Hinrichs S, Lockridge O, . Rescue of the acetylcholinesterase knockout mouse by feeding a liquid diet; phenotype of the adult acetylcholinesterase deficient mouse. Developmental Brain Research 2002;137(1):43-54. https://doi.org/10.1016/s0165-3806(02)00367-x
Lockridge O, . Review of human butyrylcholinesterase structure, function, genetic variants, history of use in the clinic, and potential therapeutic uses. Pharmacology & Therapeutics 2015;148:34-46. https://doi.org/10.1016/j.pharmthera.2014.11.011
Guillozet A, Mesulam M, Smiley J, Mash D, . Butyrylcholinesterase in the life cycle of amyloid plaques. Annals of Neurology 1997;42(6):909-918. https://doi.org/10.1002/ana.410420613
Perry E, Tomlinson B, Blessed G, Bergmann K, Gibson P, Perry R, . Correlation of cholinergic abnormalities with senile plaques and mental test scores in senile dementia.. BMJ 1978;2(6150):1457-1459. https://doi.org/10.1136/bmj.2.6150.1457
PERRY E, PERRY R, BLESSED G, TOMLINSON B, . CHANGES IN BRAIN CHOLINESTERASES IN SENILE DEMENTIA OF ALZHEIMER TYPE. Neuropathology and Applied Neurobiology 1978;4(4):273-277. https://doi.org/10.1111/j.1365-2990.1978.tb00545.x
Yurttaş L, Kaplancıklı Z, Özkay Y, . Design, synthesis and evaluation of new thiazole-piperazines as acetylcholinesterase inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry 2012;28(5):1040-1047. https://doi.org/10.3109/14756366.2012.709242
D’Ascenzio M, Chimenti P, Gidaro M, De Monte C, De Vita D, Granese A, Scipione L, Di Santo R, Costa G, Alcaro S, Yáñez M, Carradori S, . (Thiazol-2-yl)hydrazone derivatives from acetylpyridines as dual inhibitors of MAO and AChE: synthesis, biological evaluation and molecular modeling studies. Journal of Enzyme Inhibition and Medicinal Chemistry 2015;30(6):908-919. https://doi.org/10.3109/14756366.2014.987138
Sun Z, Tu L, Zhuo F, Liu S, . Design and discovery of Novel Thiazole acetamide derivatives as anticholinesterase agent for possible role in the management of Alzheimer’s. Bioorganic & Medicinal Chemistry Letters 2016;26(3):747-750. https://doi.org/10.1016/j.bmcl.2016.01.001
Matsunaga Y, Tanaka T, Yoshinaga K, Ueki S, Hori Y, Eta R, Kawabata Y, Yoshii K, Yoshida K, Matsumura T, Furuta S, Takei M, Tack J, Itoh Z, . Acotiamide Hydrochloride (Z-338), a New Selective Acetylcholinesterase Inhibitor, Enhances Gastric Motility without Prolonging QT Interval in Dogs: Comparison with Cisapride, Itopride, and Mosapride. Journal of Pharmacology and Experimental Therapeutics 2010;336(3):791-800. https://doi.org/10.1124/jpet.110.174847
Mohsen U, Kaplancikli Z, Özkay Y, Yurttaş L, . Synthesis and Evaluation of Anti-acetylcholinesterase Activity of Some Benzothiazole Based New Piperazine-dithiocarbamate Derivatives. Drug Research 2014;65(04):176-183. https://doi.org/10.1055/s-0034-1375613
Pejchal V, Štěpánková �, Pejchalová M, Královec K, Havelek R, Růžičková Z, Ajani H, Lo R, Lepšík M, . Synthesis, structural characterization, docking, lipophilicity and cytotoxicity of 1-[(1R)-1-(6-fluoro-1,3-benzothiazol-2-yl)ethyl]-3-alkyl carbamates, novel acetylcholinesterase and butyrylcholinesterase pseudo-irreversible inhibitors. Bioorganic & Medicinal Chemistry 2016;24(7):1560-1572. https://doi.org/10.1016/j.bmc.2016.02.033
Zhi H, Chen L, Zhang L, Liu S, Wan DCC, Lin H, Hu C. 5H-thiazolo[3,2-a]pyrimidine derivatives as a new type of acetylcholinesterase inhibitors. Arkivoc 2008;2008(13):266. https://doi.org/10.3998/ark.5550190.0009.d29
Liu S, Shang R, Shi L, Wan D, Lin H, . Synthesis and biological evaluation of 7H-thiazolo[3,2-b]-1,2,4-triazin-7-one derivatives as dual binding site acetylcholinesterase inhibitors. European Journal of Medicinal Chemistry 2014;81:237-244. https://doi.org/10.1016/j.ejmech.2014.05.020
Liu S, Shang R, Shi L, Zhou R, He J, Wan D, . Design, Synthesis, and Evaluation of7H-thiazolo-[3,2-b]-1,2,4-triazin-7-one Derivatives as Dual Binding Site Acetylcholinesterase Inhibitors. Chemical Biology & Drug Design 2014;84(2):169-174. https://doi.org/10.1111/cbdd.12362
Stenlake J, Dhar N, Henderson C, Maehr R, Scharver J, Wastila W, Midgley J, . Neuromuscular blocking agents. Approaches to short-acting compounds 2. Bis-thiazolium salts. European Journal of Medicinal Chemistry 1993;28(5):415-418. https://doi.org/10.1016/0223-5234(93)90128-2
Romanenko A, Vovk A, Shaturskii O, . Effects of thiazole analogs of vitamin B1 on neuromuscular transmission and ?-latrotoxin-induced transmitter release in skeletal muscles. Neurophysiology 1997;27(5-6):291-296. https://doi.org/10.1007/bf01081907
Booth A, Khalifah R, Hudson B, . Thiamine Pyrophosphate and Pyridoxamine Inhibit the Formation of Antigenic Advanced Glycation End-Products: Comparison with Aminoguanidine. Biochemical and Biophysical Research Communications 1996;220(1):113-119. https://doi.org/10.1006/bbrc.1996.0366
Vasan S, Zhang X, Zhang X, Kapurniotu A, Bernhagen J, Teichberg S, Basgen J, Wagle D, Shih D, Terlecky I, Bucala R, Cerami A, Egan J, Ulrich P, . An agent cleaving glucose-derived protein crosslinks in vitro and in vivo. Nature 1996;382(6588):275-278. https://doi.org/10.1038/382275a0
Cerami A, Ulrich PC, Wagle DR, Hwang SB, Vasan S, Egan JJ, inventor; The Picower Institute for Medical Research, Alteon Inc., assignee; Preventing and reversing advanced glycosylation endproducts. United States patent 5656261. 1997 Aug 12.
Bâ A, . Metabolic and Structural Role of Thiamine in Nervous Tissues. Cellular and Molecular Neurobiology 2008;28(7):923-931. https://doi.org/10.1007/s10571-008-9297-7
Gibson G, Hirsch J, Cirio R, Jordan B, Fonzetti P, Elder J, . Abnormal thiamine-dependent processes in Alzheimer's Disease. Lessons from diabetes. Molecular and Cellular Neuroscience 2013;55:17-25. https://doi.org/10.1016/j.mcn.2012.09.001
Alspach J, Ingraham L, . Inhibition of acetylcholinesterase by thiamine. A structure-function study. Journal of Medicinal Chemistry 1977;20(1):161-164. https://doi.org/10.1021/jm00211a035
Buchman E, Williams R, Keresztesy J, . Studies of Crystalline Vitamin B1.1X. Sulfite Cleavage. III. Chemistry of the Basic Product. Journal of the American Chemical Society 1935;57(10):1849-1851. https://doi.org/10.1021/ja01313a026
Sano T, . Vergleich der Wirksamkeit der verschiedenen Aneurinester von organischen Sauren. Bulletin of the Chemical Society of Japan 1944;19(11):185-205. https://doi.org/10.1246/bcsj.19.185
Matsukawa T, Yurugi S, . Studies on Vitamin B1 and its Related Compounds. XIII. YAKUGAKU ZASSHI 1951;71(2):69-72. https://doi.org/10.1248/yakushi1947.71.2_69
Krupka R, Laidler K, . Molecular Mechanisms for Hydrolytic Enzyme Action. I. Apparent Non-competitive Inhibition, with Special Reference to Acetylcholinesterase. Journal of the American Chemical Society 1961;83(6):1445-1447. https://doi.org/10.1021/ja01467a041
Rosenberry T, Bernhard S, . Catalysis by acetylcholinesterase. Synergistic effects of inhibitors during the hydrolysis of acetic acid esters. Biochemistry 1972;11(23):4308-4321. https://doi.org/10.1021/bi00773a018
NOCHI S, ASAKAWA N, SATO T, . Kinetic Study on the Inhibition of Acetylcholinesterase by 1-Benzyl-4-((5,6-dimethoxy-1-indanon)-2-yl)methylpiperidine Hydrochloride (E2020).. Biological & Pharmaceutical Bulletin 1995;18(8):1145-1147. https://doi.org/10.1248/bpb.18.1145
Kwon Y, Park J, No K, Shin J, Lee S, Eun J, Yang J, Shin T, Kim D, Chae B, Leem J, Kim K, . Synthesis, in vitro assay, and molecular modeling of new piperidine derivatives having dual inhibitory potency against acetylcholinesterase and Aβ1–42 aggregation for Alzheimer’s disease therapeutics. Bioorganic & Medicinal Chemistry 2007;15(20):6596-6607. https://doi.org/10.1016/j.bmc.2007.07.003
Sussman J, Harel M, Frolow F, Oefner C, Goldman A, Toker L, Silman I, . Atomic structure of acetylcholinesterase from Torpedo californica: a prototypic acetylcholine-binding protein. Science 1991;253(5022):872-879. https://doi.org/10.1126/science.1678899
Nicolet Y, Lockridge O, Masson P, Fontecilla-Camps J, Nachon F, . Crystal Structure of Human Butyrylcholinesterase and of Its Complexes with Substrate and Products. Journal of Biological Chemistry 2003;278(42):41141-41147. https://doi.org/10.1074/jbc.m210241200
Cokugras AN. Butyrylcholinesterase: structure and physiological importance. Turk. J. Biochem. 2003;28(2):54-61.
Zhan C, Zheng F, Landry D, . Fundamental Reaction Mechanism for Cocaine Hydrolysis in Human Butyrylcholinesterase. Journal of the American Chemical Society 2003;125(9):2462-2474. https://doi.org/10.1021/ja020850+
Ellman G, Courtney K, Andres V, Featherstone R, . A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology 1961;7(2):88-95. https://doi.org/10.1016/0006-2952(61)90145-9
Eyer P, Worek F, Kiderlen D, Sinko G, Stuglin A, Simeon-Rudolf V, Reiner E, . Molar absorption coefficients for the reduced Ellman reagent: reassessment. Analytical Biochemistry 2003;312(2):224-227. https://doi.org/10.1016/s0003-2697(02)00506-7
Yung-Chi C, Prusoff W, . Relationship between the inhibition constant (KI) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochemical Pharmacology 1973;22(23):3099-3108. https://doi.org/10.1016/0006-2952(73)90196-2
Cheung J, Rudolph M, Burshteyn F, Cassidy M, Gary E, Love J, Franklin M, Height J, . Structures of Human Acetylcholinesterase in Complex with Pharmacologically Important Ligands. Journal of Medicinal Chemistry 2012;55(22):10282-10286. https://doi.org/10.1021/jm300871x
Nachon F, Carletti E, Ronco C, Trovaslet M, Nicolet Y, Jean L, Renard P, . Crystal structures of human cholinesterases in complex with huprine W and tacrine: elements of specificity for anti-Alzheimer's drugs targeting acetyl- and butyryl-cholinesterase. Biochemical Journal 2013;453(3):393-399. https://doi.org/10.1042/bj20130013
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).