N-Phenacylthiazolium Salts as Inhibitors of Cholinesterases

Authors

  • Alla Ocheretniuk
  • Oleksandr Kobzar
  • Iryna Mischenko
  • Andriy Vovk

DOI:

https://doi.org/10.17721/fujcV5I2P1-14

Keywords:

acetylcholinesterase, butyrylcholinesterase, thiamin, N-phenacylthiazolium salts, inhibition

Abstract

Inhibition of acetylcholinesterase is considered as a promising approach for treatment of neurodegenerative disorders including Alzheimer's disease. In this study, we demonstrated that 5-substituted N-phenacylthiazolium derivatives are capable of inhibiting acetylcholinesterase and butyrylcholinesterase activities with IC50 values in the micromolar range. Some of the new thiazolium-based inhibitiors showed more than 10-fold selectivity for butyrylcholinesterase. Kinetic experiments and molecular docking were performed for understanding the inhibition mechanisms.

References

GIACOBINI E, . Cholinesterase inhibitors: new roles and therapeutic alternatives. Pharmacological Research 2004;50(4):433-440. https://doi.org/10.1016/j.phrs.2003.11.017

Greig N, Utsuki T, Yu Q, Zhu X, Holloway H, Perry T, Lee B, Ingram D, Lahiri D, . A New Therapeutic Target in Alzheimer's Disease Treatment: Attention to Butyrylcholinesterase. Current Medical Research and Opinion 2001;17(3):159-165. https://doi.org/10.1185/03007990152673800

PERRY E, MCKEITH I, THOMPSON P, MARSHALL E, KERWIN J, JABEEN S, EDWARDSON J, Ince P, BLESSED G, IRVING D, PERRY R, . Topography, Extent, and Clinical Relevance of Neurochemical Deficits in Dementia of Lewy Body Type, Parkinson's Disease, and Alzheimer's Disease. Annals of the New York Academy of Sciences 1991;640(1):197-202. https://doi.org/10.1111/j.1749-6632.1991.tb00217.x

Perry E, Gibson P, Blessed G, Perry R, Tomlinson B, . Neurotransmitter enzyme abnormalities in senile dementia. Journal of the Neurological Sciences 1977;34(2):247-265. https://doi.org/10.1016/0022-510x(77)90073-9

Francis P, Palmer A, Snape M, Wilcock G, . The cholinergic hypothesis of Alzheimer's disease: a review of progress. Journal of Neurology, Neurosurgery & Psychiatry 1999;66(2):137-147. https://doi.org/10.1136/jnnp.66.2.137

Whitehouse P, Price D, Struble R, Clark A, Coyle J, Delon M, . Alzheimer's disease and senile dementia: loss of neurons in the basal forebrain. Science 1982;215(4537):1237-1239. https://doi.org/10.1126/science.7058341

Ballard C, Greig N, Guillozet-Bongaarts A, Enz A, Darvesh S, . Cholinesterases: Roles in the Brain During Health and Disease. Current Alzheimer Research 2005;2(3):307-318. https://doi.org/10.2174/1567205054367838

Cummings J, . Cholinesterase Inhibitors: A New Class of Psychotropic Compounds. American Journal of Psychiatry 2000;157(1):4-15. https://doi.org/10.1176/ajp.157.1.4

Bergman J, Lerner V, . Successful Use of Donepezil for the Treatment of Psychotic Symptoms in Patients With Parkinson's Disease. Clinical Neuropharmacology 2002;25(2):107-110. https://doi.org/10.1097/00002826-200203000-00009

Rojas-Fernandez C, . Successful Use of Donepezil for the Treatment of Dementia with Lewy Bodies. Annals of Pharmacotherapy 2001;35(2):202-205. https://doi.org/10.1345/aph.10192

Aarsland D, Mosimann U, McKeith I, . Role of Cholinesterase Inhibitors in Parkinson’s Disease and dementia with Lewy Bodies. Journal of Geriatric Psychiatry and Neurology 2004;17(3):164-171. https://doi.org/10.1177/0891988704267463

Radic Z, Pickering N, Vellom D, Camp S, Taylor P, . Three distinct domains in the cholinesterase molecule confer selectivity for acetyl- and butyrylcholinesterase inhibitors. Biochemistry 1993;32(45):12074-12084. https://doi.org/10.1021/bi00096a018

Schwarz M, Glick D, Loewenstein Y, Soreq H, . Engineering of human cholinesterases explains and predicts diverse consequences of administration of various drugs and poisons. Pharmacology & Therapeutics 1995;67(2):283-322. https://doi.org/10.1016/0163-7258(95)00019-d

Duysen E, Stribley J, Fry D, Hinrichs S, Lockridge O, . Rescue of the acetylcholinesterase knockout mouse by feeding a liquid diet; phenotype of the adult acetylcholinesterase deficient mouse. Developmental Brain Research 2002;137(1):43-54. https://doi.org/10.1016/s0165-3806(02)00367-x

Lockridge O, . Review of human butyrylcholinesterase structure, function, genetic variants, history of use in the clinic, and potential therapeutic uses. Pharmacology & Therapeutics 2015;148:34-46. https://doi.org/10.1016/j.pharmthera.2014.11.011

Guillozet A, Mesulam M, Smiley J, Mash D, . Butyrylcholinesterase in the life cycle of amyloid plaques. Annals of Neurology 1997;42(6):909-918. https://doi.org/10.1002/ana.410420613

Perry E, Tomlinson B, Blessed G, Bergmann K, Gibson P, Perry R, . Correlation of cholinergic abnormalities with senile plaques and mental test scores in senile dementia.. BMJ 1978;2(6150):1457-1459. https://doi.org/10.1136/bmj.2.6150.1457

PERRY E, PERRY R, BLESSED G, TOMLINSON B, . CHANGES IN BRAIN CHOLINESTERASES IN SENILE DEMENTIA OF ALZHEIMER TYPE. Neuropathology and Applied Neurobiology 1978;4(4):273-277. https://doi.org/10.1111/j.1365-2990.1978.tb00545.x

Yurttaş L, Kaplancıklı Z, Özkay Y, . Design, synthesis and evaluation of new thiazole-piperazines as acetylcholinesterase inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry 2012;28(5):1040-1047. https://doi.org/10.3109/14756366.2012.709242

D’Ascenzio M, Chimenti P, Gidaro M, De Monte C, De Vita D, Granese A, Scipione L, Di Santo R, Costa G, Alcaro S, Yáñez M, Carradori S, . (Thiazol-2-yl)hydrazone derivatives from acetylpyridines as dual inhibitors of MAO and AChE: synthesis, biological evaluation and molecular modeling studies. Journal of Enzyme Inhibition and Medicinal Chemistry 2015;30(6):908-919. https://doi.org/10.3109/14756366.2014.987138

Sun Z, Tu L, Zhuo F, Liu S, . Design and discovery of Novel Thiazole acetamide derivatives as anticholinesterase agent for possible role in the management of Alzheimer’s. Bioorganic & Medicinal Chemistry Letters 2016;26(3):747-750. https://doi.org/10.1016/j.bmcl.2016.01.001

Matsunaga Y, Tanaka T, Yoshinaga K, Ueki S, Hori Y, Eta R, Kawabata Y, Yoshii K, Yoshida K, Matsumura T, Furuta S, Takei M, Tack J, Itoh Z, . Acotiamide Hydrochloride (Z-338), a New Selective Acetylcholinesterase Inhibitor, Enhances Gastric Motility without Prolonging QT Interval in Dogs: Comparison with Cisapride, Itopride, and Mosapride. Journal of Pharmacology and Experimental Therapeutics 2010;336(3):791-800. https://doi.org/10.1124/jpet.110.174847

Mohsen U, Kaplancikli Z, Özkay Y, Yurttaş L, . Synthesis and Evaluation of Anti-acetylcholinesterase Activity of Some Benzothiazole Based New Piperazine-dithiocarbamate Derivatives. Drug Research 2014;65(04):176-183. https://doi.org/10.1055/s-0034-1375613

Pejchal V, Štěpánková �, Pejchalová M, Královec K, Havelek R, Růžičková Z, Ajani H, Lo R, Lepšík M, . Synthesis, structural characterization, docking, lipophilicity and cytotoxicity of 1-[(1R)-1-(6-fluoro-1,3-benzothiazol-2-yl)ethyl]-3-alkyl carbamates, novel acetylcholinesterase and butyrylcholinesterase pseudo-irreversible inhibitors. Bioorganic & Medicinal Chemistry 2016;24(7):1560-1572. https://doi.org/10.1016/j.bmc.2016.02.033

Zhi H, Chen L, Zhang L, Liu S, Wan DCC, Lin H, Hu C. 5H-thiazolo[3,2-a]pyrimidine derivatives as a new type of acetylcholinesterase inhibitors. Arkivoc 2008;2008(13):266. https://doi.org/10.3998/ark.5550190.0009.d29

Liu S, Shang R, Shi L, Wan D, Lin H, . Synthesis and biological evaluation of 7H-thiazolo[3,2-b]-1,2,4-triazin-7-one derivatives as dual binding site acetylcholinesterase inhibitors. European Journal of Medicinal Chemistry 2014;81:237-244. https://doi.org/10.1016/j.ejmech.2014.05.020

Liu S, Shang R, Shi L, Zhou R, He J, Wan D, . Design, Synthesis, and Evaluation of7H-thiazolo-[3,2-b]-1,2,4-triazin-7-one Derivatives as Dual Binding Site Acetylcholinesterase Inhibitors. Chemical Biology & Drug Design 2014;84(2):169-174. https://doi.org/10.1111/cbdd.12362

Stenlake J, Dhar N, Henderson C, Maehr R, Scharver J, Wastila W, Midgley J, . Neuromuscular blocking agents. Approaches to short-acting compounds 2. Bis-thiazolium salts. European Journal of Medicinal Chemistry 1993;28(5):415-418. https://doi.org/10.1016/0223-5234(93)90128-2

Romanenko A, Vovk A, Shaturskii O, . Effects of thiazole analogs of vitamin B1 on neuromuscular transmission and ?-latrotoxin-induced transmitter release in skeletal muscles. Neurophysiology 1997;27(5-6):291-296. https://doi.org/10.1007/bf01081907

Booth A, Khalifah R, Hudson B, . Thiamine Pyrophosphate and Pyridoxamine Inhibit the Formation of Antigenic Advanced Glycation End-Products: Comparison with Aminoguanidine. Biochemical and Biophysical Research Communications 1996;220(1):113-119. https://doi.org/10.1006/bbrc.1996.0366

Vasan S, Zhang X, Zhang X, Kapurniotu A, Bernhagen J, Teichberg S, Basgen J, Wagle D, Shih D, Terlecky I, Bucala R, Cerami A, Egan J, Ulrich P, . An agent cleaving glucose-derived protein crosslinks in vitro and in vivo. Nature 1996;382(6588):275-278. https://doi.org/10.1038/382275a0

Cerami A, Ulrich PC, Wagle DR, Hwang SB, Vasan S, Egan JJ, inventor; The Picower Institute for Medical Research, Alteon Inc., assignee; Preventing and reversing advanced glycosylation endproducts. United States patent 5656261. 1997 Aug 12.

Bâ A, . Metabolic and Structural Role of Thiamine in Nervous Tissues. Cellular and Molecular Neurobiology 2008;28(7):923-931. https://doi.org/10.1007/s10571-008-9297-7

Gibson G, Hirsch J, Cirio R, Jordan B, Fonzetti P, Elder J, . Abnormal thiamine-dependent processes in Alzheimer's Disease. Lessons from diabetes. Molecular and Cellular Neuroscience 2013;55:17-25. https://doi.org/10.1016/j.mcn.2012.09.001

Alspach J, Ingraham L, . Inhibition of acetylcholinesterase by thiamine. A structure-function study. Journal of Medicinal Chemistry 1977;20(1):161-164. https://doi.org/10.1021/jm00211a035

Buchman E, Williams R, Keresztesy J, . Studies of Crystalline Vitamin B1.1X. Sulfite Cleavage. III. Chemistry of the Basic Product. Journal of the American Chemical Society 1935;57(10):1849-1851. https://doi.org/10.1021/ja01313a026

Sano T, . Vergleich der Wirksamkeit der verschiedenen Aneurinester von organischen Sauren. Bulletin of the Chemical Society of Japan 1944;19(11):185-205. https://doi.org/10.1246/bcsj.19.185

Matsukawa T, Yurugi S, . Studies on Vitamin B1 and its Related Compounds. XIII. YAKUGAKU ZASSHI 1951;71(2):69-72. https://doi.org/10.1248/yakushi1947.71.2_69

Krupka R, Laidler K, . Molecular Mechanisms for Hydrolytic Enzyme Action. I. Apparent Non-competitive Inhibition, with Special Reference to Acetylcholinesterase. Journal of the American Chemical Society 1961;83(6):1445-1447. https://doi.org/10.1021/ja01467a041

Rosenberry T, Bernhard S, . Catalysis by acetylcholinesterase. Synergistic effects of inhibitors during the hydrolysis of acetic acid esters. Biochemistry 1972;11(23):4308-4321. https://doi.org/10.1021/bi00773a018

NOCHI S, ASAKAWA N, SATO T, . Kinetic Study on the Inhibition of Acetylcholinesterase by 1-Benzyl-4-((5,6-dimethoxy-1-indanon)-2-yl)methylpiperidine Hydrochloride (E2020).. Biological & Pharmaceutical Bulletin 1995;18(8):1145-1147. https://doi.org/10.1248/bpb.18.1145

Kwon Y, Park J, No K, Shin J, Lee S, Eun J, Yang J, Shin T, Kim D, Chae B, Leem J, Kim K, . Synthesis, in vitro assay, and molecular modeling of new piperidine derivatives having dual inhibitory potency against acetylcholinesterase and Aβ1–42 aggregation for Alzheimer’s disease therapeutics. Bioorganic & Medicinal Chemistry 2007;15(20):6596-6607. https://doi.org/10.1016/j.bmc.2007.07.003

Sussman J, Harel M, Frolow F, Oefner C, Goldman A, Toker L, Silman I, . Atomic structure of acetylcholinesterase from Torpedo californica: a prototypic acetylcholine-binding protein. Science 1991;253(5022):872-879. https://doi.org/10.1126/science.1678899

Nicolet Y, Lockridge O, Masson P, Fontecilla-Camps J, Nachon F, . Crystal Structure of Human Butyrylcholinesterase and of Its Complexes with Substrate and Products. Journal of Biological Chemistry 2003;278(42):41141-41147. https://doi.org/10.1074/jbc.m210241200

Cokugras AN. Butyrylcholinesterase: structure and physiological importance. Turk. J. Biochem. 2003;28(2):54-61.

Zhan C, Zheng F, Landry D, . Fundamental Reaction Mechanism for Cocaine Hydrolysis in Human Butyrylcholinesterase. Journal of the American Chemical Society 2003;125(9):2462-2474. https://doi.org/10.1021/ja020850+

Ellman G, Courtney K, Andres V, Featherstone R, . A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology 1961;7(2):88-95. https://doi.org/10.1016/0006-2952(61)90145-9

Eyer P, Worek F, Kiderlen D, Sinko G, Stuglin A, Simeon-Rudolf V, Reiner E, . Molar absorption coefficients for the reduced Ellman reagent: reassessment. Analytical Biochemistry 2003;312(2):224-227. https://doi.org/10.1016/s0003-2697(02)00506-7

Yung-Chi C, Prusoff W, . Relationship between the inhibition constant (KI) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochemical Pharmacology 1973;22(23):3099-3108. https://doi.org/10.1016/0006-2952(73)90196-2

Cheung J, Rudolph M, Burshteyn F, Cassidy M, Gary E, Love J, Franklin M, Height J, . Structures of Human Acetylcholinesterase in Complex with Pharmacologically Important Ligands. Journal of Medicinal Chemistry 2012;55(22):10282-10286. https://doi.org/10.1021/jm300871x

Nachon F, Carletti E, Ronco C, Trovaslet M, Nicolet Y, Jean L, Renard P, . Crystal structures of human cholinesterases in complex with huprine W and tacrine: elements of specificity for anti-Alzheimer's drugs targeting acetyl- and butyryl-cholinesterase. Biochemical Journal 2013;453(3):393-399. https://doi.org/10.1042/bj20130013

Downloads

Published

2017-12-30