7-Substituted pyrrolo[2,3-d]pyrimidines for the synthesis of new 1-deazapyrimido[1,2,3-cd]purines
DOI:
https://doi.org/10.17721/fujcV5I2P15-23Keywords:
pyrrolo[2, 3-d]pyrimidine, iodolactonization, 5, 6-dihydro-4H-1-deazapyrimido[1, 2, 3-cd]purine, cyclizationsAbstract
Few examples of new heterocyclic 1-deazapyrimido[1,2,3-cd]purine derivatives were synthesized by intramolecular cyclization of methyl 7-(oxiran-2-ylmethyl)-7H-pyrrolo[2,3-d]pyrimidine-6-carboxylates. The latter were obtained by iodolactonization of 7-allylpyrrolo[2,3-d]pyrimidine-6-carboxylic acids.
References
Rybár A. Annulated Heterocyclo-Purines II: Fused Six- and More-Membered Heterocyclo-Purinediones, -Purinones and -Purineimines. Advances in Heterocyclic Chemistry 2005;88:175-229. https://doi.org/10.1016/s0065-2725(04)88003-6
Szymańska E, Mazurkiewicz J, Kieć-Kononowicz K. Methods for the synthesis of xanthine-derived polycyclic fused systems. Heterocyclic Communications 2013;19(5):297-310. https://doi.org/10.1515/hc-2013-0082
Šimo O, Rybár A, Alföldi J. New [c,d]-Fused Purinediones: 2-Substituted 9-Methyl-4,5-dihydro-6H,8H-pyrimido-[1,2,3-cd]purine-8,10(9H)-diones. Synthesis 1995;1995(07):837-840. https://doi.org/10.1055/s-1995-3996
Simo O, Rybár A, Alföldi J. 2-Triazolylpyrimido[1,2,3-cd]purine-8,10-dionesvia1,3-dipolar cycloadditions to 2-ethynylpyrimido[1,2,3-cd]purine-8,10-dione. Journal of Heterocyclic Chemistry 2000;37(5):1033-1039. https://doi.org/10.1002/jhet.5570370502
Qi S, Zhang S, Gao C, Li Q. Purine and Pyrimidine Derivatives from the South China Sea Gorgonian Subergorgia suberosa. CHEMICAL & PHARMACEUTICAL BULLETIN 2008;56(7):993-994. https://doi.org/10.1248/cpb.56.993
Weyler S, Hayallah A, Müller C. Versatile, convenient synthesis of pyrimido[1,2,3-cd]purinediones. Tetrahedron 2003;59(1):47-54. https://doi.org/10.1016/s0040-4020(02)01485-0
Burbiel J, Hockemeyer J, Müller C. . Beilstein Journal of Organic Chemistry 2006;2(1):20. https://doi.org/10.1186/1860-5397-2-20
Weyler S, Fülle F, Diekmann M, Schumacher B, Hinz S, Klotz K, Müller C. Improving Potency, Selectivity, and Water Solubility of Adenosine A1 Receptor Antagonists: Xanthines Modified at Position 3 and Related Pyrimido[1,2,3-cd]purinediones. ChemMedChem 2006;1(8):891-902. https://doi.org/10.1002/cmdc.200600066
Mieczkowski A, Roy V, Agrofoglio L. Preparation of Cyclonucleosides. Chemical Reviews 2010;110(4):1828-1856. https://doi.org/10.1021/cr900329y
KIKUGAWA K. Transformation of adenosine into N3,3'- and N3,5'-cycloadenosines via the reactions with sulfuryl chloride and thionyl chloride.. CHEMICAL & PHARMACEUTICAL BULLETIN 1977;25(9):2181-2188. https://doi.org/10.1248/cpb.25.2181
De Carvalho G, Fourrey J, Dodd R, Da Silva A. Synthesis of a 4′,4′-spirothietane-2′, N3-cycloadenosine as a highly constrained analogue of 5′-deoxy-5′-methylthioadenosine (MTA). Tetrahedron Letters 2009;50(4):463-466. https://doi.org/10.1016/j.tetlet.2008.11.039
Mizuno Y, Ikehara M, Watanabe K, Suzaki S, Itoh T. Synthetic Studies of Potential Antimetabolites. IX. The Anomeric Configuration of Tubercidin. The Journal of Organic Chemistry 1963;28(12):3329-3331. https://doi.org/10.1021/jo01047a012
Verves E, Kucher A, Muzychka L, Smolii O. Synthesis of 7-alkyl-4-amino-7H-pyrrolo-[2,3-d]pyrimidine-6-carboxylic acids. Chemistry of Heterocyclic Compounds 2013;48(12):1844-1852. https://doi.org/10.1007/s10593-013-1218-0
Grunewald G, Dahanukar V. Synthesis of 3-alkyl-8-substituted- and 4-hydroxy-8-substituted-2,3,4,5-tetrahydro-1H-2-benzazepines. Journal of Heterocyclic Chemistry 1994;31(6):1609-1617. https://doi.org/10.1002/jhet.5570310656
Roux M, Paugam R, Rousseau G. Evaluation ofexo-endoRatios in the Halolactonization of ω-Unsaturated Acids. The Journal of Organic Chemistry 2001;66(12):4304-4310. https://doi.org/10.1021/jo0017234
Joseph B, Putey A, Fournet G. General and Easy Access to 11-Substituted 4-Hydroxy-2,3,4,5-tetrahydro[1,4]diazepino[1,2-a]indol-1-one Derivatives. Synlett 2006;2006(17):2755-2758. https://doi.org/10.1055/s-2006-950249
Seden T, Turner R. The reaction of adenine with epichlorohydrin. Journal of Heterocyclic Chemistry 1975;12(5):1045-1046. https://doi.org/10.1002/jhet.5570120548
Harriman G, Poirot A, Abushanab E, Midgett R, Stoeckler J. Adenosine deaminase inhibitors. Synthesis and biological evaluation of C1' and nor-C1' derivatives of (+)-erythro-9-[2(S)-hydroxy-3(R)-nonyl]adenine. Journal of Medicinal Chemistry 1992;35(22):4180-4184. https://doi.org/10.1021/jm00100a025
Sund P, Kronberg L. Ring-Opening of 3-β-D-Ribofuranosyl-3,7,8,9-Tetrahydropyrimido [1,2-i]Purin-8-ol and Preparation of 2-Thio- and 2-aza-Adenosine Derivatives. Nucleosides, Nucleotides and Nucleic Acids 2008;27(12):1215-1226. https://doi.org/10.1080/15257770802458162
Robison M, Butler F, Robison B. 7-Azaindole. IV. The Hydrogenation of 7-Azaindole and Related Compounds1,2. Journal of the American Chemical Society 1957;79(10):2573-2578. https://doi.org/10.1021/ja01567a057
Savarino P, Viscardi G, Barni E, Di Modica G. Quaternary salts and polymethine dyes from 2-(methylpyridyl)-X-azolo[4,5-b]pyridine. Journal of Heterocyclic Chemistry 1987;24(4):1053-1060. https://doi.org/10.1002/jhet.5570240428
Holý A. Preparation of aliphatic analogues of S-adenosyl-L-homocysteine and related compounds. Collection of Czechoslovak Chemical Communications 1981;46(12):3134-3144. https://doi.org/10.1135/cccc19813134
Kim M, Gokel G. A molecular box, based on bibracchial lariat ethers having adenine and thymine sidearms, that self-assembles in water. Journal of the Chemical Society, Chemical Communications 1987;(22):1686. https://doi.org/10.1039/c39870001686
Shibinskaya M, Kutuzova N, Mazepa A, Lyakhov S, Andronati S, Zubritsky M, Galat V, Lipkowski J, Kravtsov V. Synthesis of 6-Aminopropyl-6H-indolo[2,3-b]quinoxaline Derivatives. Journal of Heterocyclic Chemistry 2012;49(3):678-682. https://doi.org/10.1002/jhet.805
Sundberg R, Dalvie D, Cordero J, Sabat M, Musallam H. Carbamates of (hydroxyphenoxy)methyl heteroaromatic salts as acetylcholinesterase inhibitors and protective agents against organophosphorus compounds. Chemical Research in Toxicology 1993;6(4):500-505. https://doi.org/10.1021/tx00034a017
Parlar S, Bayraktar G, Tarikogullari A, Alptüzün V, Erciyas E. Synthesis, Biological Evaluation and Molecular Docking Study of Hydrazone-Containing Pyridinium Salts as Cholinesterase Inhibitors. Chemical and Pharmaceutical Bulletin 2016;64(9):1281-1287. https://doi.org/10.1248/cpb.c16-00221
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).