Study of Calixarene Complexation with Biologically Active

Authors

  • Olga Kalchenko Institute of Organic Chemistry National Aademy of Sciences of Ukraine
  • Sergiy Cherenok Institute of Organic Chemistry National Academy of Sciences of Ukraine
  • Sergiy Suikov Institute of Organic Chemistry National Academy of Sciences of Ukraine
  • Vitaly Kalchenko Institute of Organic Chemistry National Academy of Sciences of Ukraine

DOI:

https://doi.org/10.17721/fujcV5I2P49-55

Keywords:

calix[4]arenes, calix[4]resorcinarenes, reversible-phase high performance liquid chromatography, aromatic carboxylc acids, pyridine carboxylic acids, diterpenoid acids, Host-Guest complexes, supramolecular interactions

Abstract

Host-Guest complexation of octakis(diphenoxyphosphoryloxy)tetramethylcalix[4]resorcinarene CRA and 5,17-bis-(N-tolyliminomethyl)-25,27-dipropoxycalix[4]arene CA with  bio relevant aromatic, pyridine and diterpenoid carboxylic acids in water-organic solution had been studied by the RP HPLC and molecular modelling methods. The stability constants KA (387-1914 М-1) of the supramolecular complexes had been determined. It was shown the Host-Guest interactions are depended on structure of the Host molecules and  log P  values of the Guests. The complexation is determined by the hydrogen bonds of the COOH group of the carboxylic acids with P=O oxygen atom of diphenoxyphosphoryl group of the calixresorcinarene CRA, and oxygen or nitrogen atoms located on the lower or the upper rim of the calixarene CA.

Author Biographies

Olga Kalchenko, Institute of Organic Chemistry National Aademy of Sciences of Ukraine

Physical-chemical investigations Department

Sergiy Cherenok, Institute of Organic Chemistry National Academy of Sciences of Ukraine

Phosphoranes Department

Sergiy Suikov, Institute of Organic Chemistry National Academy of Sciences of Ukraine

Physical-Chemical Department

Vitaly Kalchenko, Institute of Organic Chemistry National Academy of Sciences of Ukraine

Director of the Institute of Organic Chemistry National Academy of Sciences of Ukraine

References

Roh S, Park M, Kim Y. Abietic Acid from Resina Pini of Pinus Species as a Testosterone 5α-Reductase Inhibitor. JOURNAL OF HEALTH SCIENCE 2010;56(4):451-455. https://doi.org/10.1248/jhs.56.451

Svikle D, Prikule A, Shuster Y, Veselov I. Biological activity and toxicity of maleopimaric acid derivatives. Pharmaceutical Chemistry Journal 1978;12(5):617-620. https://doi.org/10.1007/bf00777984

Nicholson R, Lees G, Zheng J, Verdon B. Inhibition of GABA-gated chloride channels by 12,14-dichlorodehydroabietic acid in mammalian brain. British Journal of Pharmacology 1999;126(5):1123-1132. https://doi.org/10.1038/sj.bjp.0702419

Kalchenko OI, Solovyov AV, Kalchenko VI. J Org and Pharm Chem 2015;13:3-8.

Ludwig R. Calixarenes for Biochemical Recognition and Separation. Microchimica Acta 2005;152(1-2):1-19. https://doi.org/10.1007/s00604-005-0422-8

Buschmann H, Mutihac L, Schollmeyer E. Thermodynamic Data for the Complex Formation of Alkylamines and Their Hydrochlorides with α-Cyclodextrin in Aqueous Solution. Journal of Inclusion Phenomena and Macrocyclic Chemistry 2005;51(1-2):53-57. https://doi.org/10.1007/s10847-004-6093-y

Kalchenko O, Da Silva E, Coleman A. . Journal of Inclusion Phenomena and Macrocyclic Chemistry 2002;43(3/4):305-310. https://doi.org/10.1023/a:1021203505307

Diamond D, Nolan K. Peer Reviewed: Calixarenes: Designer Ligands for Chemical Sensors. Analytical Chemistry 2001;73(1):22 A-29 A. https://doi.org/10.1021/ac012376g

Da Silva E, Lazar A, Coleman A. Biopharmaceutical applications of calixarenes. Journal of Drug Delivery Science and Technology 2004;14(1):3-20. https://doi.org/10.1016/s1773-2247(04)50001-1

Solovyov A, Cherenok S, Kalchenko O, Atamas L, Kazantseva Z, Koshets I, Tsymbal I, Kalchenko V. Synthesis and complexation of amphiphilic calix[4]arene phosphonates with organic molecules in solutions and Langmuir-Blodgett films. Journal of Molecular Liquids 2011;159(2):117-123. https://doi.org/10.1016/j.molliq.2010.12.007

Gutsche CD. Calixarenes Revisited, RSC, Cambridge, 1998. http://dx.doi.org/10.1039/9781847550293

Sansone F, Segura M, Ungaro R. Calixarenes in Bioorganic and Biomimetic Chemistry. In: M.-Z. Asfari, V. Böhmer, J. Harrowfield, J. Vicens, (eds.), Calixarenes 2001, Kluwer Academic Publishers, Dordrecht, 2001:496-512. https://doi.org/10.1007/0-306-47522-7_27

Casnati A, Sansone F, Ungaro R. Peptido- and Glycocalixarenes: Playing with Hydrogen Bonds around Hydrophobic Cavities. Accounts of Chemical Research 2003;36(4):246-254. https://doi.org/10.1021/ar0200798

Perret F, Lazar A, Coleman A. Biochemistry of the para-sulfonato-calix[n]arenes. Chemical Communications 2006;(23):2425. https://doi.org/10.1039/b600720c

Coleman A, Perret F, Moussa A, Dupin M, Guo Y, Perron H. Calix[n]arenes as Protein Sensors. Creative Chemical Sensor Systems 2007;277:31-88. https://doi.org/10.1007/128_2007_115

Zadmard R, Schrader T. Nanomolar Protein Sensing with Embedded Receptor Molecules. Journal of the American Chemical Society 2005;127(3):904-915. https://doi.org/10.1021/ja045785d

Park H, Lin Q, Hamilton A. Protein Surface Recognition by Synthetic Receptors: A Route to Novel Submicromolar Inhibitors for α-Chymotrypsin. Journal of the American Chemical Society 1999;121(1):8-13. https://doi.org/10.1021/ja981504o

Rodik R, Boyko V, Kalchenko V. Calixarenes in Bio-Medical Researches. Current Medicinal Chemistry 2009;16(13):1630-1655. https://doi.org/10.2174/092986709788186219

de Fatima A, Fernandes S, Sabino A. Calixarenes as New Platforms for Drug Design. Current Drug Discovery Technologies 2009;6(2):151-170. https://doi.org/10.2174/157016309788488302

Lipkowski J, Kalchenko O, Slowikowska J, Kalchenko V, Lukin O, Markovsky L, Nowakowski R. Host-guest interactions of calix[4]resorcinarenes with benzene derivatives in conditions of reversed-phase high-performance liquid chromatography. Determination of stability constants. Journal of Physical Organic Chemistry 1998;11(6):426-437. https://doi.org/10.1002/(sici)1099-1395(199806)11:6<426::aid-poc963>3.0.co;2-r

Kalchenko O, Lipkowsk J, Kalchenko V, Vysotsky M, Markovsky L. Effect of Octakis(diethoxyphosphoryloxy)-tert-butyl-calix[8]arene in Mobile Phase on the Reversed-Phase Retention Behavior of Aromatic Compounds: Host-Guest Complex Formation and Stability Constants Determination. Journal of Chromatographic Science 1998;36(5):269-273. https://doi.org/10.1093/chromsci/36.5.269

Kalchenko O, Solovyov A, Kalchenko V, Lipkowski J. . Journal of Inclusion Phenomena and Macrocyclic Chemistry 1999;34(3):259-266. https://doi.org/10.1023/a:1008086519227

Douteau-Guével N, Perret F, Coleman A, Morel J, Morel-Desrosiers N, . Binding of dipeptides and tripeptides containing lysine or arginine by p-sulfonatocalixarenes in water: NMR and microcalorimetric studiesElectronic supplementary information (ESI) available: chemical shifts experienced by different protons of KK, RR, KKK or RRR in the presence of increasing amounts of 14 or 16; heat effects observed upon titration of 14, 16 or 18 by KK, RR, KKK or RRR; COSY and ROESY 2D 1H NMR spectra for 14 complexed with KK or RR. See http://www.rsc.org/suppdata/p2/b1/b109553f/. Journal of the Chemical Society, Perkin Transactions 2 2002;(3):524-532. https://doi.org/10.1039/b109553f

Douteau-Guével N, Coleman A, Morel J, Morel-Desrosiers N. Complexation of the basic amino acids lysine and arginine by three sulfonatocalix[n]arenes (n = 4, 6 and 8) in water: microcalorimetric determination of the Gibbs energies, enthalpies and entropies of complexation. Journal of the Chemical Society, Perkin Transactions 2 1999;(3):629-634. https://doi.org/10.1039/a806855k

Perret F, Lazar A, Coleman A. Biochemistry of the para-sulfonato-calix[n]arenes. Chemical Communications 2006;(23):2425. https://doi.org/10.1039/b600720c

Sansone F, Barboso S, Casnati A, Sciotto D, Ungaro R. A new chiral rigid cone water soluble peptidocalix[4]arene and its inclusion complexes with α-amino acids and aromatic ammonium cations. Tetrahedron Letters 1999;40(25):4741-4744. https://doi.org/10.1016/s0040-4039(99)00838-2

Kalchenko O, Lipkowski J, Nowakowski R, Kalchenko V, Vysotsky M, Markovsky L. Host-Guest Complexation of Phosphorus Contained Calixarenes with Aromatic Molecules in RP HPLC Conditions. The Stability Constants Determination. Molecular Recognition and Inclusion 1998;23:377-380. https://doi.org/10.1007/978-94-011-5288-4_63

Kalchenko O, Da Silva E, Coleman A. . Journal of Inclusion Phenomena and Macrocyclic Chemistry 2002;43(3/4):305-310. https://doi.org/10.1023/a:1021203505307

Kalchenko O, Pozna?ski J, Marcinowicz A, Cherenok S, Solovyov A, Zielenkiewicz W, Kalchenko V. Complexation of tetrapropoxycalix[4]arene with uracil and adenine derivatives in water-containing solution. Journal of Physical Organic Chemistry 2003;16(4):246-252. https://doi.org/10.1002/poc.595

Kalchenko O, Marcinowicz A, Poznanski J, Cherenok S, Solovyov A, Zielenkiewicz W, Kalchenko V. Complexation of upper rim phosphorylated calix[4]arenes with uracil derivatives in water-containing solution. Journal of Physical Organic Chemistry 2005;18(7):578-585. https://doi.org/10.1002/poc.902

Kyte J, Doolittle R. A simple method for displaying the hydropathic character of a protein. Journal of Molecular Biology 1982;157(1):105-132. https://doi.org/10.1016/0022-2836(82)90515-0

Kalchenko VI, Rudkevich DM, Shivanyuk AN, Tsimbal IF, Pirozhenko VV, Markovsky LN. Russ. J. Gen. Chem. 1994;64:731–742

Markovsky LN, Kalchenko VI, Solovyov AV, Finocchiaro P, Failla S, Atamas LI, Consiglio G, Tsymbal IF. Anales de Quimica. 1998;94:164–170.

Meylan W, Howard P. Atom/Fragment Contribution Method for Estimating Octanol–Water Partition Coefficients. Journal of Pharmaceutical Sciences 1995;84(1):83-92. https://doi.org/10.1002/jps.2600840120

http://www.hyper.com/Download/All Downloads/tabid/470/Default.aspx

Downloads

Published

2017-12-30