The synthesis of angular heteroarenochromones based on 7-hydroxy-8-carbonylchromones

Tatyana Shokol, Oleg Lozinski, Natalia Gorbulenko, Volodymyr Khilya

Abstract


The present review highlights advanced strategies to the synthesis of the chromones annulated with O- and N-containing heterocycles at C(7)-C(8) bond. Due to the prevalence of such motives in different kinds of natural flavonoids and some alkaloids, fused chromones have attracted a great deal of attention so far. On the other hand a wide range of biological activities is displayed by the compounds of this type both among naturally occurring flavonoids and their synthetic analogues. 8-Carbonyl-7-hydroxychromones proved to be versatile synthones for the synthesis of angular hetarenochromones via approach of annulation of a heterocycle to the chromone core. It also addresses the question of the biological activity of naturally occurring and fused synthetic hetarenochromones.


Keywords


8-formyl-7-hydroxychromones; 8-acetyl(benzoyl)-7-hydroxychromones; annulation; furo[2,3-h]chromones; pyrano[2,3-f]chromones; α-pyrono[2,3-f]chromones; γ-pyrono[2,3-f]chromones; fused pyrano[2,3-f]chromones; isoxazolo[7,8-d]chromones

Full Text:

PDF

References


Gaspar A, Matos M, Garrido J, Uriarte E, Borges F. Chromone: A Valid Scaffold in Medicinal Chemistry. Chemical Reviews 2014;114(9):4960-4992. https://doi.org/10.1021/cr400265z

Keri R, Budagumpi S, Pai R, Balakrishna R, . Chromones as a privileged scaffold in drug discovery: A review. European Journal of Medicinal Chemistry 2014;78:340-374. https://doi.org/10.1016/j.ejmech.2014.03.047

Lozinskii O, Shokol T, Khilya V. Synthesis and biological activity of chromones annelated at the C(7)–C(8) bond with heterocycles (review). Chemistry of Heterocyclic Compounds 2011;47(9):1055-1077. https://doi.org/10.1007/s10593-011-0876-z

Yadav P, Gupta P, Chaturvedi A, Shukla P, Maurya R. Synthesis of 4-hydroxy-1-methylindole and benzo[b]thiophen-4-ol based unnatural flavonoids as new class of antimicrobial agents☆. Bioorganic & Medicinal Chemistry 2005;13(5):1497-1505. https://doi.org/10.1016/j.bmc.2004.12.032

Rangaswami S, Seshadri TR. 7-Hydroxychromone-8-aldehydes and their conversion into chromono-7:8-α-pyrones. Proceedings Indian Acad. Sci., Sect. A. 1939;9(1):7-9.

Jayaprakash Rao Y, Thirupathi G, Prasad Rao C, Hemasri Y. Synthesis of novel substituted pyrano annulated flavones. Russian Journal of General Chemistry 2016;86(5):1126-1131. https://doi.org/10.1134/s1070363216050248

Chung S, Huang Y, Hsiung H, Huang W, Yao C, Lee A. Novel Daidzein Analogs and Theirin VitroAnti-Influenza Activities. Chemistry & Biodiversity 2015;12(4):685-696. https://doi.org/10.1002/cbdv.201400337

Shokol T, Turov V, Semenyuchenko V, Khilya V. Azaheterocyclic derivatives of α-pyrono[2,3-f]isoflavones. Chemistry of Natural Compounds 2006;42(6):668-672. https://doi.org/10.1007/s10600-006-0248-6

Shokol T, Lozinskii O, Tkachuk T, Khilya V. 7-Hydroxy-3-phenoxy-8-formylchromones, analogs of natural flavonoids. Chemistry of Natural Compounds 2009;45(3):350-355. https://doi.org/10.1007/s10600-009-9345-7

Shokol T, Lozinskii O, Turov A, Khilya V. Synthesis of 9-azolyl-3-(4-phenyl-4h-1,2,4-triazol-3-yl)-4h,8h-pyrano-[2,3-f]chromene-4,8-diones. Chemistry of Heterocyclic Compounds 2009;45(9):1089-1094. https://doi.org/10.1007/s10593-009-0402-8

Shokol T, Lozinskii O, Tkachuk T, Volovnenko T, Khilya V. Furyl analogs of α-pyrono[2,3-f]isoflavones with an azole substituent in the α-pyrone nucleus. Chemistry of Heterocyclic Compounds 2010;46(6):675-680. https://doi.org/10.1007/s10593-010-0568-0

Mannkind corporation. Zeng Q, Toro A, Patterson J, Bruce W, Warren S, Zubovics Z, YANG Y, Wu Z. Ire - 1α inhibitor. Japan patent 2015/214548. 2015 March 12.

RE P, VERLICCHI L, SETNIKAR I. Mannich Reaction on 7-Hydroxychromones and Flavones. Synthesis of Powerful Central Nervous System Stimulants. The Journal of Organic Chemistry 1960;25(7):1097-1100. https://doi.org/10.1021/jo01077a007

Shokol T, Gorbulenko N, Tkachuk T, Khilya V, . Convenient method for synthesis of 3-(het)-aryl-8-formyl-7-hydroxy-chromones. Chemistry of Heterocyclic Compounds 2009;45(3):370-371. https://doi.org/10.1007/s10593-009-0263-1

Wittig G. Darstellung von Benzo-di-[γ-pyronen]. Berichte der deutschen chemischen Gesellschaft (A and B Series) 1926;59(1):116-119. https://doi.org/10.1002/cber.19260590118

Kelkar GR, Limaye DB. Influence of an acyl group in the 3-position on reactions of chromones. II. Action of aluminum chloride on 7-benzoyloxy-2-methyl-3-acetylchromone. Rasayanam. 1939;1:183-186.

Parich SM, Thakor VM. Fries transformation and Friedel-Crafts reaction. Part III. Friedel-Crafts acylation of some hydroxychromones. J. Indian Chem. Soc. 1959;36:841-842.

Alam M, Lee D. Cytotoxic and antimicrobial properties of furoflavones and furochalcones. Journal of the Korean Society for Applied Biological Chemistry 2011;54(5):725-730. https://doi.org/10.1007/bf03253151

Michaelis M, Rothweiler F, Nerreter T, Sharifi M, Ghafourian T, Cinatl J. Karanjin interferes with ABCB1, ABCC1, and ABCG2. Journal of Pharmacy & Pharmaceutical Sciences 2014;17(1):92. https://doi.org/10.18433/j3bw2s

RAO C, SUBRAMANYAM G, VENKATESWARLU V. Synthesis of Chromones. III. Furano and Pyrono Derivatives of Chromone. The Journal of Organic Chemistry 1959;24(5):685-687. https://doi.org/10.1021/jo01087a033

Kelkar GR, Limaye DB. Syntheses in the furochromone group. I. Furochromones from hydroxychromones. Rasayanam. 1941;1:228-230.

Ramachandra Row L, Seshadri TR. Synthetic experiments in the benzo-pyrone series. Part XVII. Some isoflavono-7:8-furans. Proceedings Indian Acad. Sci., Sect. A. 1951;34:187-196.

Ramachandra Row L, Seshadri TR. Synthetic experiments in the benzopyrone series. Part XV. Synthesis of karanjin. Proceedings Indian Acad. Sci., Sect. A. 1951;33:168-172.

Aneja R, Mukerjee S, Seshadri T. Synthesis of benzo-furan derivatives-I. Tetrahedron 1958;2(3-4):203-210. https://doi.org/10.1016/0040-4020(58)88041-2

Rangaswami S, Seshadri TR. Synthetic experiments in the benzo-pyrone series. Part I Synthesis of karanjin-α-carboxylic acid. Proceedings Indian Acad. Sci., Sect. A. 1939;9(3):259-264.

Rodighiero P, Pastorini G, Chilin A, Manzini P, Guiotto A. Synthesis of some methylfurochromones as potential photochemotherapeutic agents. Journal of Heterocyclic Chemistry 1988;25(2):527-533. https://doi.org/10.1002/jhet.5570250232

Satyanarayana Reddy S, Venkati M, Yayaprakash Rao Y, Sharma KK, Krupadanam GLD. A convenient synthesis of ethyl furo[2,3-h]flavone/chromone-8-carboxylates. Indian J. Chem. 2011;50B:1671-1676.

Ramu M, Srinivasulu B. Facile synthesis of methyl-2-(furyl-2-yl) 3-methyl-4-oxo-4h-furo(2,3-H)chromene-8-carboxylate. Der Pharma Chemica 2015;7(3):226-229.

Fukui K, Kawase Y. Synthetic Studies on the Benzofuran Derivatives. Part V. Synthesis of Furano (2′,3′: 7,8)-isoflavone. Bulletin of the Chemical Society of Japan 1958;31(6):693-695. https://doi.org/10.1246/bcsj.31.693

Matsumoto T, Kawase Y, Nanbu M, Fukui K. Synthetic Studies on the Benzofuran Derivatives. Part III. Reaction of 7-Hydroxy-8-formyl-2-methylisoflavone with Ethyl Bromomalonate and Synthesis of Furano(2′,3′:7,8)-2-methylisoflavone. Bulletin of the Chemical Society of Japan 1958;31(6):688-690. https://doi.org/10.1246/bcsj.31.688

Kawase Y, Matsumoto T, Fukui K. Synthetic Studies on the Benzofuran Derivatives. Part I. A New Synthesis of Karanjin. Bulletin of the Chemical Society of Japan 1955;28(4):273-275. https://doi.org/10.1246/bcsj.28.273

FUKUI K, NAKAYAMA M, OKAZAKI K. Synthesis of Furano (2", 3" ; 7, 8)-3', 4'-methylenedioxyisoflavone. Nippon kagaku zassi 1964;85(7):446-449,A36. https://doi.org/10.1246/nikkashi1948.85.7_446

Kawase Y, Ogawa K, Miyoshi S, Fukui K. Synthetic Studies on the Benzofuran Derivatives. VI. Synthesis of Furano(2″,3″:7,8)-2′-methoxy-isoflavone Derivatives. Bulletin of the Chemical Society of Japan 1960;33(9):1240-1242. https://doi.org/10.1246/bcsj.33.1240

Fukui K, Nakayama M, Hatanaka M. The Synthesis of Elliptol Isoflavone. Bulletin of the Chemical Society of Japan 1963;36(7):872-873. https://doi.org/10.1246/bcsj.36.872

Sharada J, Kanakalingeswara Rao M. Synthesis of 8-Aroyl-9-phenylfuro<2,3-h>-1-benzopyran-4(H)-ones as Possible Antiimplantation Agents. Indian J. Chem., Sect. B. 1985;24:1091-1093.

Sharada J, Krishna Murthy KS, Rajitha B, Kanakalingeswara Rao, M. Synthesis of aroyl benzopyrones as possible anti-implantation agents. Indian J. Heterocycl. Chem. 1999;9(7):7-12.

Reddy S, Krupadanam G, . Facile Synthesis of 9-Acetyl/Formyl/Cyano-Substituted Pyrano[2,3-f]flavones and Chromones Using the Baylis–Hillman Reaction. Synthetic Communications 2010;40(9):1292-1304. https://doi.org/10.1080/00397910903069681

Jayaprakash R, Niranjan K, Hemasri Y, David K. Synthesis of novel-9-cyano/acetylpyrano[2,3-f]chromones via Baylis-Hillman reaction. Heterocyclic Communications 2011;17(5-6):173–176. https://doi.org/10.1515/hc.2011.037

Chenna Krishna Reddy R, Madhusudana Rao G, Thirupal Reddy M, Rami Reddy YV. Facile Synthesis of 9-Acetyl-pyrano[2,3-F]isoflavones. Asian Journal of Chemistry 2013;25(9):4833-4835. https://doi.org/10.14233/ajchem.2013.14117

Venkata Suryanarayana Ch, Anuradha V. An efficient synthesis of heteroannulated chromene-9-carbonitrile derivatives via Baylis-Hillman reaction. International J. Curr. Pharm. Res. 2013;5(3):36-39.

Jayaprakash Rao Y, Thirupathi G, Prasad Rao C, Hemasri Y. Synthesis of novel substituted pyrano annulated flavones. Russian Journal of General Chemistry 2016;86(5):1126-1131. https://doi.org/10.1134/s1070363216050248

Ramachandra Row L, Seshadri TR. Flavylium salts containing pyrone rings. Proceedings Indian Acad. Sci., Sect. A. 1942;15:118-122.

Pastorini G, Rodighiero P, Manzini P, Conconi MT, Chilin A, Guiotto A Methylpyranochromones and methylbenzodipyranones: new potential photoreagents towards DNA Gazz. Chim. Ital. 1989;119(9):481-485.

Vijava Lakshmi M, Subba Rao NV. Synthesis and bacteriostatic activity of linear (7,6) and angular (7,8)-α-pyronochromones. Curr. Sci. 1973;42(1):19-21.

Thakar KA, Manjaramkar NR. Synthesis of 2-heterocyclic substituted coumarino-γ-pyrones. Indian J. Chem. 1971;9:892-893.

Joshi B, Kamat V. Structures of clausenin, clausenidin and a synthesis of clausenin and xanthoxyletin. Tetrahedron Letters 1966;7(46):5767-5773. https://doi.org/10.1016/s0040-4039(01)84193-9

Joshi B, Kamat V, Saksena A. Structures of clausenin and clausenidin two new pyranocoumarins from the roots of clausena heptaphylla Wt. & Arn.. Tetrahedron 1967;23(12):4785-4789. https://doi.org/10.1016/s0040-4020(01)92576-1

Iinuma M, Asai F, Tanaka T, Mizuno M. Two Complex Flavonoids in the Farinose Exudate of Pityrogramma calomelanos. HETEROCYCLES 1992;33(1):229. https://doi.org/10.3987/com-91-s21

Iinuma M, Tanaka T, Asai F. Flavonoids in frond exudates of Pityrogramma tartarea. Phytochemistry 1994;36(4):941-943. https://doi.org/10.1016/s0031-9422(00)90467-9

Kawase Y, Sekiba T, Fukui K. Synthesis of Isoflavono(7′,8′: 6,5)-α-pyrones and Formylation of 2,4-Dihydroxyphenyl Benzyl Ketone. Bulletin of the Chemical Society of Japan 1958;31(8):997-998. https://doi.org/10.1246/bcsj.31.997

Lozinski O, , Shokol T, Shishkin O, Medvediev V, Khilya V, , , , , . The redeeming features of reaction of the 8-formyl-7-hydroxychromones with malononitrile. French-Ukrainian Journal of Chemistry 2014;2(1):10-15. https://doi.org/10.17721/fujcv2i1p10-15

Shokol TV, Gorbulenko NV, Khilya VP. 9-Azahetaryl-3-(isoxazol-3-yl)pyrano[2,3-f]chromen-4,8-diones. Dopov. NAS Ukraine. 2010;(7):142–145.

Lozinski O, Shokol T, Khilya V. 4H,8H-Pyrano[2,3-f]chromene-4,8-diones as versatile precursors for the synthesis of 6-(1,2-oxazol-5-yl)-2H-chromene-2-ones. Monatshefte für Chemie - Chemical Monthly 2012;144(2):217-222. https://doi.org/10.1007/s00706-012-0844-z

Shokol T, Nestorak I, Turov A, Gunko V, Volovenko Y, Khilya V. 3-[2(4)-Pyrimidinyl]coumarins and their condensed analogs. Chemistry of Heterocyclic Compounds 2010;46(7):829-838. https://doi.org/10.1007/s10593-010-0590-2

S.P. Rao H, S. Tangeti V. Synthesis of 3-Aroylcoumarin-Flavone Hybrids. Letters in Organic Chemistry 2012;9(3):218-220. https://doi.org/10.2174/157017812800167501

Kaneta M, Sugiyama N. The Structure of a New Flavone, “Arthraxin”. Bulletin of the Chemical Society of Japan 1969;42(7):2084-2084. https://doi.org/10.1246/bcsj.42.2084

Keneta M, Sugiyama N. The structure of a new flavone, ‘arthraxin’. J. Chem. Soc. C 1971;0(0):1982-1986. https://doi.org/10.1039/j39710001982

Kaneta M, Sugiyama N. The Constituents ofArthraxon hispidus Makino, Miscanthus tinctorius Hackel, Miscanthus sinensis Anderss, andPhragmites communis Trinius. Bulletin of the Chemical Society of Japan 1972;45(2):528-531. https://doi.org/10.1246/bcsj.45.528

Sugiyama N, Kaneta M. Extracting yellow dye from Arthraxon hispidus Makino. Japan patent 7300164. 1973 Jan. 06.

Kaneta M, Sugiyama N. The Light Resistance of the Complex Salts of Flavones and Flavonols. Bulletin of the Chemical Society of Japan 1973;46(7):2265-2266. https://doi.org/10.1246/bcsj.46.2265

Kaneta M, Hikichi H, Endo S, Sugiyama N. The Synthesis of New Flavones with a 4H,10H-Benzo[1,2-b: 3,4-b′]dipyran-4,10-dione Skeleton and the Light Resistannce of These Compounds. Bulletin of the Chemical Society of Japan 1978;51(6):1784-1787. https://doi.org/10.1246/bcsj.51.1784

Murthy YLN, Srinivas ASSV. Synthesis of new flavanoid derivatives as liquid crystals. Indian. J. Het. Chem. 1991;1(2):91-94.

Bantick J, Cairns H, Chambers A, Hazard R, King J, Lee T, Minshull R. Benzodipyran derivatives with antiallergic activity. Journal of Medicinal Chemistry 1976;19(6):817-821. https://doi.org/10.1021/jm00228a016

Kumar KA, Srimannarayana G. Analogs of disodium cromoglycate as antiallergic agents: part I – synthesis of some chromone carboxylic acids: 4,10-dioxo-2-phenyl-4H,10H-benzo[1,2-b:3,4-b]dipyran-8-carboxylic acids. Indian. J. Chem., Sect. B. 1984;23(10):969-972.

Cairns H, Minshull R. Antiasthmatic benzopyrones. S. Africa patent (ZA) 6804981. 1969. Mar. 24.

Cairns H, Roders NH. Benzopyran- und thiabenzopyran- verbindungen, verfahren zu deren herstellung und diese enthaltende pharmazeutische praparate. German patent (DE) 2247969. 1973.Apr.5.

Cairns H, Minshull R. Substituted benzodipyrones. Britain patent (GB) 1230087. 1971.Apr.28.

Cairns H, Minshull R. Benzodipyrones. United States patent (US) 3718668. 1973 Feb 27.

Cairns H, Johnson PB, Minshull R. Neue verbindungen. German patent (DE) 2235572. 1973 Feb 8.

Wittig G. Zur Erschließung der Benzo-γ-pyrone. Justus Liebig's Annalen der Chemie 1926;446(1):155-204. https://doi.org/10.1002/jlac.19264460112

Omote Y, Takizawa Y, Sugiyama N. The Synthesis of 2,8-Dephenyl-4H,10H-benzodipyran-4,10-dione. Bulletin of the Chemical Society of Japan 1971;44(4):1160-1160. https://doi.org/10.1246/bcsj.44.1160

Lozinski O, Shokol T, Khilya V. A novel method of synthesis of the 4Н,10Н-pyrano[2,3-f]chromen-4,10-dione system. Bull. Taras Shevchenko National University of Kyiv. 2015;1(51):61-63.

Schlittler E, Spitaler U. On the contents of schumanniophyton problematicum (rubiaceae). Tetrahedron Letters 1978;19(32):2911-2914. https://doi.org/10.1016/s0040-4039(01)94896-8

Houghton P, Hairong Y. Novel Chromone Alkaloids fromSchumanniophyton magnificum. Planta Medica 1985;51(01):23-27. https://doi.org/10.1055/s-2007-969383

Houghton P, Hairong Y. Further Chromone Alkaloids fromSchumanniophyton magnificum. Planta Medica 1987;53(03):262-264. https://doi.org/10.1055/s-2006-962698

Houghton P, Woldemariam T, Khan A, Burke A, Mahmood N, . Antiviral activity of natural and semi-synthetic chromone alkaloids. Antiviral Research 1994;25(3-4):235-244. https://doi.org/10.1016/0166-3542(94)90006-x

Jayaprakash Rao Y, David Krupadanam GL. A facile synthesis of 7,8/6,7 fused pyrano[4,3-b]pyridinochromones and evaluation of antibacterial activity. Indian J. Chem 2000;39B:610-630.

Kumar Soni A, David Krupadanam G, Srimannarayana G. Facile Synthesis of 7‐Methoxy‐2‐aryl‐3‐phenyl/or‐H‐8‐[2‐(4,6‐dimethyl‐3,5‐dicarbethoxy‐pyridyl)]‐4H‐1‐benzopyran‐4‐ones. Synthetic Communications 2007;37(5):795-804. https://doi.org/10.1080/00397910601133581

Kumar B, Venkatesham A, Nagaiah K, Babu N, . Synthesis of New Pyrano[2′,3′: 5,6]chromeno[4,3-b]quinolin-4-onesviaAza-DielsAlderReaction. Helvetica Chimica Acta 2015;98(3):417-426. https://doi.org/10.1002/hlca.201400286

Venkatesham A, Rao R, Nagaiah K, Yadav J, RoopaJones G, Basha S, Sridhar B, Addlagatta A. Synthesis of new chromeno-annulated cis-fused pyrano[3,4-c]pyran derivatives via domino Knoevenagel–hetero-Diels–Alder reactions and their biological evaluation towards antiproliferative activity. MedChemComm 2012;3(6):652. https://doi.org/10.1039/c2md20023f

Nagaiah K, Venkatesham A, Srinivasa Rao R, Saddanapu V, Yadav J, Basha S, Sarma A, Sridhar B, Addlagatta A. Synthesis of new cis-fused tetrahydrochromeno[4,3-b]quinolines and their antiproliferative activity studies against MDA-MB-231 and MCF-7 breast cancer cell lines. Bioorganic & Medicinal Chemistry Letters 2010;20(11):3259-3264. https://doi.org/10.1016/j.bmcl.2010.04.061

Bejjanki N, Venkatesham A, Madda J, Kommu N, Pombala S, Ganesh Kumar C, Prasad K, Nanubolu J. Synthesis of new chromeno-annulated cis-fused pyrano[4,3-c]isoxazole derivatives via intramolecular nitrone cycloaddition and their cytotoxicity evaluation. Bioorganic & Medicinal Chemistry Letters 2013;23(14):4061-4066. https://doi.org/10.1016/j.bmcl.2013.05.060

Madda J, Venkatesham A, Naveen Kumar B, Nagaiah K, Sujitha P, Ganesh Kumar C, Rao T, Jagadeesh Babu N, . Synthesis of novel chromeno-annulated cis -fused pyrano[3,4- c ]benzopyran and naphtho pyran derivatives via domino aldol-type/hetero Diels–Alder reaction and their cytotoxicity evaluation. Bioorganic & Medicinal Chemistry Letters 2014;24(18):4428-4434. https://doi.org/10.1016/j.bmcl.2014.08.005

Subhadra Kumari S, Krishna Mohan Rao KSR, Subba Rao NV. Isoxazolo(7,8-d)flavones. Proc. Indian. Acad. Sci. 1973;77:149-156.

Culshaw AJ, Brain CT, Dziadulewicz EK, Edwards L, Hart TW, Ritchie TJ, inventors; Novartis Ag., assignee. Chromone derivatives useful as antagonists of vr1 receptors. World Intellectual Property Organization (WO) patent 2007065888. 2007 Jun 14.

Lin W, Brauers G, Ebel R, Wray V, Berg A, Sudarsono , Proksch P. Novel Chromone Derivatives from the FungusAspergillusversicolorIsolated from the Marine SpongeXestospongiaexigua1. Journal of Natural Products 2003;66(1):57-61. https://doi.org/10.1021/np020196b

Simonetti S, Larghi E, Bracca A, Kaufman T. Synthesis of the unique angular tricyclic chromone structure proposed for aspergillitine, and its relationship with alkaloid TMC-120B. Organic & Biomolecular Chemistry 2012;10(20):4124. https://doi.org/10.1039/c2ob25067e

Simonetti S, Larghi E, Bracca A, Kaufman T. Angular tricyclic benzofurans and related natural products of fungal origin. Isolation, biological activity and synthesis. Natural Product Reports 2013;30(7):941. https://doi.org/10.1039/c3np70014c

Yuan Z, Cheng R, Chen P, Liu G, Liang S. Efficient Pathway for the Preparation of Aryl(isoquinoline)iodonium(III) Salts and Synthesis of Radiofluorinated Isoquinolines. Angewandte Chemie International Edition 2016;55(39):11882-11886. https://doi.org/10.1002/anie.201606381

Yuan Z, Cheng R, Chen P, Liu G, Liang S. Efficient Pathway for the Preparation of Aryl(isoquinoline)iodonium(III) Salts and Synthesis of Radiofluorinated Isoquinolines. Angewandte Chemie 2016;128(39):12061-12065. https://doi.org/10.1002/ange.201606381




DOI: https://doi.org/10.17721/fujcV5I2P68-94

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

ISSN 2312-3222 (Online)

Creative Commons License
 French-Ukrainian Journal of Chemistry is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2013 French-Ukrainian Journal of Chemistry