NH3(CH2)6NH3SiF6 catalyzed highly efficient synthesis of benzimidazoles, benzoxazoles, benzothiazoles, quinoxalines and pyrimidin-2-ones/thiones

Zakaria Benzekri, Houda Serrar, Boukhris Said, Ali Ouasri, Amina Hassikou, Ali Rhandour, Abdelaziz Souizi


Herein, we describe a simple, highly efficient and environmentally friendly protocol for the synthesis of benzimidazoles, benzoxazoles, benzothiazoles,  3,4-dihydropyrimidin-2-ones/ thiones and quinoxalines derivatives using hybrid crystal NH3(CH2)6NH3SiF6 as a catalyst. Use of recyclable catalyst, easy work-up procedure, excellent yields, short reaction times and scalability are the important practical features of the present protocol.


Cristal hybrid, Heterogeneous catalysis, Benzimidazole, Quinoxaline, Pyrimidin-2-ones/thiones.

Full Text:



Lindsley C, Zhao Z, Leister W, Robinson R, Barnett S, Defeo-Jones D, Jones R, Hartman G, Huff J, Huber H, Duggan M. Allosteric Akt (PKB) inhibitors: discovery and SAR of isozyme selective inhibitors. Bioorganic & Medicinal Chemistry Letters 2005;15(3):761-764. https://doi.org/10.1016/j.bmcl.2004.11.011

Beheshtiha YS, Heravi MM, Saeedi M, Karimi N, Zakeri M, Hossieni NT. Efficient and Green Synthesis of 1,2-Disubstituted Benzimidazoles and Quinoxalines Using Br⊘nsted Acid Ionic Liquid, [(CH2)4SO3HMIM][HSO4], in Water at Room Temperature. Synthetic Communications 2010;8(8):1216-1223. https://doi.org/10.1080/00397910903062280

Dong F, Kai G, Zhenghao F, Xinli Z, Zuliang L. A practical and efficient synthesis of quinoxaline derivatives catalyzed by task-specific ionic liquid. Catalysis Communications 2008;9(2):317-320. https://doi.org/10.1016/j.catcom.2007.07.003

Potewar TM, Ingale SA, Srinivasan KV. Efficient Synthesis of Quinoxalines in the Ionic Liquid 1-n-Butylimidazolium Tetrafluoroborate ([Hbim]BF4) at Ambient Temperature. Synthetic Communications 2008;68(21):3601-3612. https://doi.org/10.1080/00397910802054271

Mizuno T, Wei W, Eller L, Sessler J. Phenanthroline Complexes Bearing Fused Dipyrrolylquinoxaline Anion Recognition Sites: Efficient Fluoride Anion Receptors.. Journal of the American Chemical Society 2002;124(7):1134-1135. https://doi.org/10.1021/ja017298t

Dailey S, Feast W, Peace R, Sage I, Till S, Wood E. Synthesis and device characterisation of side-chain polymer electron transport materials for organic semiconductor applications. Journal of Materials Chemistry 2001;11(9):2238-2243. https://doi.org/10.1039/b104674h

Brien D, Weaver MS, Lidzey DG, Bradley DDC. Use of poly(phenyl quinoxaline) as an electron transport material in polymer light‐emitting diodes. Applied Physics Letters 1996;241(7):881-883. https://doi.org/10.1063/1.117975

Hegedus L, Greenberg M, Wendling J, Bullock J. Synthesis of 5,12-Dioxocyclam Nickel (II) Complexes Having Quinoxaline Substituents at the 6 and 13 Positions as Potential DNA Bis-Intercalating and Cleaving Agents. The Journal of Organic Chemistry 2003;68(11):4179-4188. https://doi.org/10.1021/jo020708r

Javidi J, Esmaeilpour M. Fe3O4@SiO2–imid–PMAn magnetic porous nanosphere as recyclable catalyst for the green synthesis of quinoxaline derivatives at room temperature and study of their antifungal activities. Materials Research Bulletin 2016;73:409-422. https://doi.org/10.1016/j.materresbull.2015.10.002

Thimmaraju N, Shamshuddin SM. Synthesis of 2,4,5-trisubstituted imidazoles, quinoxalines and 1,5-benzodiazepines over an eco-friendly and highly efficient ZrO2–Al2O3catalyst. RSC Adv. 2016;33(2):60231-60243. https://doi.org/ 10.1039/C6RA13956F

Ghobadi E, Peiravi M, Kolvari E. J. Appl. Chem. 2016;10:49-54.

Shamsi-Sani M, Shirini F, Abedini M, Seddighi M. Synthesis of benzimidazole and quinoxaline derivatives using reusable sulfonated rice husk ash (RHA-SO3H) as a green and efficient solid acid catalyst. Research on Chemical Intermediates 2015;57(2):1091-1099. https://doi.org/10.1007/s11164-015-2075-5

Moghaddam SV, Valizadeh H. Ionic liquid functionalized cellulose as an efficient heterogeneous catalyst for the facile and green synthesis of benzoxazine, pyrazine and quinoxaline derivatives in aqueous media. Journal of the Iranian Chemical Society 2016;66(8):1517-1524. https://doi.org/10.1007/s13738-016-0868-0

Digwal C, Yadav U, Sakla A, Sri Ramya P, Aaghaz S, Kamal A. VOSO4 catalyzed highly efficient synthesis of benzimidazoles, benzothiazoles, and quinoxalines. Tetrahedron Letters 2016;57(36):4012-4016. https://doi.org/10.1016/j.tetlet.2016.06.074

Xiang P, Zhou T, Wang L, Sun C, Hu J, Zhao Y, Yang L. Novel Benzothiazole, Benzimidazole and Benzoxazole Derivatives as Potential Antitumor Agents: Synthesis and Preliminary in Vitro Biological Evaluation. Molecules 2012;17(12):873-883. https://doi.org/10.3390/molecules17010873

Bardajee GR, Mohammadi M, Yari H, Ghaedi A. Chin. Chem. Lett. 2016;27:265-270

Rezayati S, Mehmannavaz M, Salehi E, Haghi S, Hajinasiri R, Sharif Abad SA. J. Sci. Islam. Rep. Iran 2016;27:51-63.

Aron Z, Overman L. The tethered Biginelli condensation in natural product synthesis. Chemical Communications 2004;(3):253. https://doi.org/10.1039/b309910e

Haggarty S, Mayer T, Miyamoto D, Fathi R, King R, Mitchison T, Schreiber S. Dissecting cellular processes using small molecules: identification of colchicine-like, taxol-like and other small molecules that perturb mitosis. Chemistry & Biology 2000;7(4):275-286. https://doi.org/10.1016/s1074-5521(00)00101-0

Yarım M, Saraç S, Kılıç F, Erol K. Synthesis and in vitro calcium antagonist activity of 4-aryl-7,7-dimethyl/1,7,7-trimethyl-1,2,3,4,5,6,7,8-octahydroquinazoline-2,5-dione derivatives. Il Farmaco 2003;58(1):17-24. https://doi.org/10.1016/s0014-827x(02)00009-5

Zare A, Nasouri Z. A green approach for the synthesis of 3,4-dihydropyrimidin-2-(1H)-ones (and -thiones) using N,N-diethyl-N-sulfoethanaminium hydrogen sulfate. Journal of Molecular Liquids 2016;216:364-369. https://doi.org/10.1016/j.molliq.2016.01.056

An L, Han L, Wang Z, Huang T, Zhu H. Calix[8]arene Sulfonic Acid Catalyzed Three-Component Reaction for Convenient Synthesis of 3,4-Dihydropyrimidin-2(1H)-ones/thiones under Ultrasonic Irradiation. Biological & Pharmaceutical Bulletin 2016;39(2):267-271. https://doi.org/10.1248/bpb.b15-00681

Khatri CK, Rekunge DS, Chaturbhuj GU. Sulfated polyborate: a new and eco-friendly catalyst for one-pot multi-component synthesis of 3,4-dihydropyrimidin-2(1H)-ones/thiones via Biginelli reaction. New J. Chem. 2016;24(12):10412-10417. https://doi.org/10.1039/c6nj03120j

Gopinath KR, Premkumar HB, Shekar HS, Rajendraprasad KJ, Nagabhushana H, Manjula K. World J. Pharm. Pharm. Sci. 2016;5:1579-1589.

Mobinikhaledi A, Foroughifar N, Khajeh-Amiri A. N-Propylcarbamothioyl benzamide complex of Bi(III) supported on superparamagnetic Fe3O4/SiO2 nanoparticles as a highly efficient and magnetically recoverable heterogeneous nanocatalyst for the one-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones/thiones (DHPMs) via the Biginelli reaction. Reaction Kinetics, Mechanisms and Catalysis 2015;41(1):59-75. https://doi.org/10.1007/s11144-015-0931-3

Azarifar D, Abbasi Y, Badalkhani O. Sulfonic acid-functionalized titanomagnetite nanoparticles as recyclable heterogeneous acid catalyst for one-pot solvent-free synthesis of 3,4-dihydropyrimidin-2(1H)-ones/thiones. Journal of the Iranian Chemical Society 2016;62(11):2029-2038. https://doi.org/10.1007/s13738-016-0920-0

Farhadi A, Noei J, Aliyari RH, Albakhtiyari M, Takassi MA. Experimental and theoretical study on a one-pot, three-component route to 3,4-dihydropyrimidin-2(1H)-ones/thiones TiCl3OTf-[bmim]Cl. Research on Chemical Intermediates 2015;8(2):1401-1409. https://doi.org/10.1007/s11164-015-2092-4

Abbasi M. 1,3-Disulfonic acid benzimidazolium chloride as an efficient and recyclable ionic liquid catalyst for the synthesis of 3,4-dihydropyrimidine-2-(1H)-ones/thiones. Research on Chemical Intermediates 2015;25(4):3303-3314. https://doi.org/10.1007/s11164-015-2211-2

Lashkari M, Heydari R, Mohamad F. Abstracts for Faculty of Chemistry Conference. Acta Chemica Iasi 2016;24(2):29-42. https://doi.org/10.1515/achi-2016-0013

Benzekri Z, Serrar H, Boukhris S, Sallek B, Souizi A. Snail shell as a new natural and reusable catalyst for synthesis of 4H-Pyrans derivatives. Current Chemistry Letters 2016;5:99-108. https://doi.org/10.5267/j.ccl.2016.4.001

Benzekri Z, Mejdoubi KE, Boukhris S, Sallek B, Lakhrissi B, Souizi A. Dicalcium phosphate dehydrate DCPD as a highly efficient and reusable catalyst for Knoevenagel condensation. Synthetic Communications 2016;9(5):442-451. https://doi.org/10.1080/00397911.2016.1142565

Bahammou I, Esaady A, Boukhris S, Ghailane R, Habbadi N, Hassikou A, Souizi A. Direct use of mineral fertilizers MAP, DAP, and TSP as heterogeneous catalysts in organic reactions. Mediterranean Journal of Chemistry 2016;5(6):615. https://doi.org/10.13171/mjc56/01607062219-souizi

Ouasri A, Rhandour A, Saadi M, Ammari LE. Hexane-1,6-diammonium hexafluorosilicate. Acta Crystallographica Section E Structure Reports Online 2013;43(1):o92-o93. https://doi.org/10.1107/s1600536813034144

Ouasri A, Rhandour A, Saadi M, Ammari LE. Butane-1,4-diammonium hexafluorosilicate. Acta Crystallographica Section E Structure Reports Online 2014;43(2):o174-o174. https://doi.org/10.1107/s1600536814001068

Ouasri A, Elyoubi M, Guedira T, Rhandour A, Mhiri T, Daoud A. Synthesis, DTA, IR and raman spectra of penthylenediammonium hexachlorostannate NH3(CH2)5NH3SnCl6. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2001;57(13):2593-2598. https://doi.org/10.1016/s1386-1425(01)00431-0

Elyoubi M, Ouasri A, Jeghnou H, Rhandour A, Dhamelincourt MC, Dhamelincourt PC, Mazzah A. Vibrational spectroscopic study of alkylenediammonium hexachlorostannate compounds, NH3(CH2)nNH3SnCl6 (n = 3 and 4). Journal of Raman Spectroscopy 2004;26(12):1056-1062. https://doi.org/10.1002/jrs.1254

Ouasri A, Rhandour A, Dhamelincourt M, Dhamelincourt P, Mazzah A, Taibi M. Structural phase transitions in [(C2H5)4N]2SiF6: differential scanning calorimetry and Raman studies. Journal of Raman Spectroscopy 2002;63(9):715-719. https://doi.org/10.1002/jrs.902

Ouasri A, Rhandour A, Dhamelincourt M, Dhamelincourt P, Mazzah A, Taibi M. Infrared and Dielectric Studies of [(C2H5)4N]2SiF6. Phase Transitions 2003;76(7):701-709. https://doi.org/10.1080/0141159021000037240

Jeghnou H, Ouasri A, Rhandour A, Dhamelincourt MC, Dhamelincourt P, Mazzah A. Structural phase transitions in [C6H5NH3]2SiF6: differential scanning calorimetry and Raman studies. Journal of Raman Spectroscopy 2003;62(6):399-403. https://doi.org/10.1002/jrs.1008

Jeghnou H, Ouasri A, Elyoubi M, Rhandour A, Dhamelincourt M, Dhamelincourt P, Mazzah A. Differential scanning calorimetric and Raman studies of a phase transition in[C3H7NH3]2SiF6. Journal of Raman Spectroscopy 2004;35(4):261-265. https://doi.org/10.1002/jrs.1145

Ouasri A, Rhandour A, Dhamelincourt M, Dhamelincourt P, Mazzah A. The infrared and Raman spectra of ethylammonium hexafluorosilicate [C2H5NH3]2SiF6. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2003;59(2):357-362. https://doi.org/10.1016/s1386-1425(02)00165-8

Banerjee S, Payra S, Saha A, Sereda G. ZnO nanoparticles: a green efficient catalyst for the room temperature synthesis of biologically active 2-aryl-1,3-benzothiazole and 1,3-benzoxazole derivatives. Tetrahedron Letters 2014;55(40):5515-5520. https://doi.org/10.1016/j.tetlet.2014.07.123

Rodríguez-Domínguez J, Bernardi D, Kirsch G. ZrCl4 or ZrOCl2 under neat conditions: optimized green alternatives for the Biginelli reaction. Tetrahedron Letters 2007;48(33):5777-5780. https://doi.org/10.1016/j.tetlet.2007.06.104

Kappe C. Microwave-Assisted High-Speed Parallel Synthesis of 4-Aryl-3,4-dihydropyrimidin-2(1H)-ones using a Solventless Biginelli Condensation Protocol. Synthesis 1999;1999(10):1799-1803. https://doi.org/10.1055/s-1999-3592

Sowmiya M, Sharma A, Parsodkar S, Mishra B, Dubey A. Nanosized sulfated SnO2 dispersed in the micropores of Al-pillared clay as an efficient catalyst for the synthesis of some biologically important molecules. Applied Catalysis A: General 2007;333(2):272-280. https://doi.org/10.1016/j.apcata.2007.09.024

Ahn B, Gang M, Chae K, Oh Y, Shin J, Chang W. A microwave-assisted synthesis of 3,4-dihydro-pyrimidin-2-(1H)-ones catalyzed by FeCl3-supported Nanopore Silica under solvent-free conditions. Journal of Industrial and Engineering Chemistry 2008;14(3):401-405. https://doi.org/10.1016/j.jiec.2008.01.008

Debache A, Boumoud B, Amimour M, Belfaitah A, Rhouati S, Carboni B. Phenylboronic acid as a mild and efficient catalyst for Biginelli reaction. Tetrahedron Letters 2006;47(32):5697-5699. https://doi.org/10.1016/j.tetlet.2006.06.015

Kamal A, Babu K, Hussaini S, Mahesh R, Alarifi A. Amberlite IR-120H, an efficient and recyclable solid phase catalyst for the synthesis of quinoxalines: a greener approach. Tetrahedron Letters 2015;56(21):2803-2808. https://doi.org/10.1016/j.tetlet.2015.04.046

Inamdar S, More V, Mandal S. CuO nano-particles supported on silica, a new catalyst for facile synthesis of benzimidazoles, benzothiazoles and benzoxazoles. Tetrahedron Letters 2013;54(6):579-583. https://doi.org/10.1016/j.tetlet.2012.11.091

Shelkar R, Sarode S, Nagarkar J. Nano ceria catalyzed synthesis of substituted benzimidazole, benzothiazole, and benzoxazole in aqueous media. Tetrahedron Letters 2013;54(51):6986-6990. https://doi.org/10.1016/j.tetlet.2013.09.092

DOI: https://doi.org/10.17721/fujcV5I1P60-71


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

ISSN 2312-3222 (Online)

Creative Commons License
 French-Ukrainian Journal of Chemistry is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2013 French-Ukrainian Journal of Chemistry