Spectroscopic Studies on the Interaction between Tilorone and Human Serum Albumin


  • Alla Yegorova A.V. Bogatsky Physico-chemical Institute of the National Academy of Sciences of Ukraine
  • Inna Leonenko A.V. Bogatsky Physico-chemical Institute of the National Academy of Sciences of Ukraine
  • Yulia Scrypynets A.V. Bogatsky Physico-chemical Institute of the National Academy of Sciences of Ukraine
  • Georgy Maltsev Open Joint-Stock Ukrainian - Belgian Chemical Enterprise " InterChem ", Lustdorfskaya doroga 86, Odessa 65080, Ukraine
  • Valery Antonovich A.V. Bogatsky Physico-chemical Institute of the National Academy of Sciences of Ukraine
  • Sergey Kashutskуy Open Joint-Stock Ukrainian - Belgian Chemical Enterprise " InterChem ", Lustdorfskaya doroga 86, Odessa 65080, Ukraine




fluorenone, human serum albumin, fluorescence quenching, fluorescence resonance energy transfer, thermodynamic parameters


Under physiological conditions, in vitro interaction between the antiviral drug 2,7-bis[2-(diethylamino)ethoxy]-9-fluorenone dihydrochloride (Tilorone, TIL) and human serum albumin (HSA) was investigated at excitation wavelength 280 nm and at different temperatures (298 K and 313 K) by fluorescence emission spectroscopy. TIL showed a strong ability to quench the intrinsic fluorescence of HSA through a static quenching procedure. The binding constant is estimated as KA =7.19× 104L·mol-1 at 298 K. The enthalpy change (ΔHº) and entropy change (ΔSº) were derived to be negative values. A value of 1.63 nm for the average distance r between TIL (acceptor) and tryptophan residues of HSA (donor) was derived from the fluorescence resonance energy transfer.


Gentili P, Ortica F, Favaro G. Static and Dynamic Interaction of a Naturally Occurring Photochromic Molecule with Bovine Serum Albumin Studied by UV−Visible Absorption and Fluorescence Spectroscopy. The Journal of Physical Chemistry B 2008;112(51):16793-16801. https://doi.org/10.1021/jp805922g

Tian J, Liu J, He W, Hu Z, Yao X, Chen X. Probing the Binding of Scutellarin to Human Serum Albumin by Circular Dichroism, Fluorescence Spectroscopy, FTIR, and Molecular Modeling Method. Biomacromolecules 2004;5(5):1956-1961. https://doi.org/10.1021/bm049668m

Th. Peters. Jr.: All about Albumin. Biochemistry, Genetics, and Medical Applications. XX and 432 pages, numerous figures and tables. Academic Press, Inc., San Diego, California, 1996. Price: 85.00 US $.

Kwon S, Carson J. Fluorescence Quenching and Dequenching Analysis of RNA Interactionsin Vitroandin Vivo. Analytical Biochemistry 1998;264(2):133-140. https://doi.org/10.1006/abio.1998.2846

Khan S, Islam B, Yennamalli R, Sultan A, Subbarao N, Khan A. Interaction of mitoxantrone with human serum albumin: Spectroscopic and molecular modeling studies. European Journal of Pharmaceutical Sciences 2008;35(5):371-382. https://doi.org/10.1016/j.ejps.2008.07.010

Wang Y, Tang B, Zhang H, Zhou Q, Zhang G. Studies on the interaction between imidacloprid and human serum albumin: Spectroscopic approach. Journal of Photochemistry and Photobiology B: Biology 2009;94(3):183-190. https://doi.org/10.1016/j.jphotobiol.2008.11.013

Gao X, Tang Y, Rong W, Zhang X, Zhao W, Zi Y. Analysis of Binding Interaction between Captopril and Human Serum Albumin. American Journal of Analytical Chemistry 2011;02(02):250-257. https://doi.org/10.4236/ajac.2011.22030

Roy S, Ganai S, Nandi R, Majundar K, Das T. Studies Of The Interaction Of Bovine Serum Albumin With Pyrimidine-annulated Spiro-dihydrofuran And Its Biological Activities. Advanced Materials Letters 2015;6(11):1018-1024. https://doi.org/10.5185/amlett.2015.5933

Xu H, Yao N, Xu H, Wang T, Li G, Li Z. Characterization of the Interaction between Eupatorin and Bovine Serum Albumin by Spectroscopic and Molecular Modeling Methods. International Journal of Molecular Sciences 2013;14(7):14185-14203. https://doi.org/10.3390/ijms140714185

Rasoulzadeh F, Asgari D, Naseri A, Rashidi MR. Spectroscopic studies on the interaction between erlotinib hydrochloride and bovine serum albumin. DARU 2010;18:179-184.

Hossain M, Khan A, Suresh Kumar G. Interaction of the Anticancer Plant Alkaloid Sanguinarine with Bovine Serum Albumin. PLoS ONE 2011;6(4):e18333. https://doi.org/10.1371/journal.pone.0018333

WANG C, WU Q, WANG Z, ZHAO J. Study of the Interaction of Carbamazepine with Bovine Serum Albumin by Fluorescence Quenching Method. Analytical Sciences 2006;22(3):435-438. https://doi.org/10.2116/analsci.22.435

Roy A, Tripathy D, Chatterjee A, Dasgupta S. A spectroscopic study of the interaction of the antioxidant naringin with bovine serum albumin. Journal of Biophysical Chemistry 2010;01(03):141-152. https://doi.org/10.4236/jbpc.2010.13017

Varlan A, Hillebrand M. Bovine and Human Serum Albumin Interactions with 3-Carboxyphenoxathiin Studied by Fluorescence and Circular Dichroism Spectroscopy. Molecules 2010;15(6):3905-3919. https://doi.org/10.3390/molecules15063905

Dong S, Li Z, Shi L, Huang G, Chen S, Huang T. The interaction of plant-growth regulators with serum albumin: Molecular modeling and spectroscopic methods. Food and Chemical Toxicology 2014;67:123-130. https://doi.org/10.1016/j.fct.2014.02.020

Jin J, Zhang X. Spectrophotometric studies on the interaction between pazufloxacin mesilate and human serum albumin or lysozyme. Journal of Luminescence 2008;128(1):81-86. https://doi.org/10.1016/j.jlumin.2007.05.008

Zhang H, Wang Y, Zhou Q. Fluorimetric study of interaction of benzidine with trypsin. Journal of Luminescence 2010;130(5):781-786. https://doi.org/10.1016/j.jlumin.2009.11.032

Li D, Zhu J, Jin J. Spectrophotometric studies on the interaction between nevadensin and lysozyme. Journal of Photochemistry and Photobiology A: Chemistry 2007;189(1):114-120. https://doi.org/10.1016/j.jphotochem.2007.01.017

Zhu J, Li D, Jin J, Wu L. Binding analysis of farrerol to lysozyme by spectroscopic methods. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2007;68(2):354-359. https://doi.org/10.1016/j.saa.2006.11.045

Gowda B, Mallappa M, Gowda J, Rengasamy R. Interaction of ketoconazole with bovine serum albumin: electrochemical, spectroscopic and molecular modeling studies J. Appl. Pharm. Sci. 2015;5:037-044.

Abu T, Ghithan J, Abu-Taha M, Darwish S, Abu-hadid M. Spectroscopic approach of the interaction study of ceftriaxone and human serum albumin. Journal of Biophysics and Structural Biology 2014;6(1):1-12. https://doi.org/10.5897/jbsb2013.0045

Hamdi O, Feroz S, Shilpi J, Anouar E, Mukarram A, Mohamad S, Tayyab S, Awang K. Spectrofluorometric and Molecular Docking Studies on the Binding of Curcumenol and Curcumenone to Human Serum Albumin. International Journal of Molecular Sciences 2015;16(3):5180-5193. https://doi.org/10.3390/ijms16035180

Salam M, Rokonujjaman M, Rahman A, Nasrin Sultana U, Sultan M. Study of in Vitro Interaction of Sildenafil Citrate with Bovine Serum Albumin by Fluorescence Spectroscopy. Pharmacology & Pharmacy 2015;06(02):94-101. https://doi.org/10.4236/pp.2015.62012

Meti M, Nandibewoor S, Joshi S, More U, Chimatadar S. Multi-spectroscopic investigation of the binding interaction of fosfomycin with bovine serum albumin. Journal of Pharmaceutical Analysis 2015;5(4):249-255. https://doi.org/10.1016/j.jpha.2015.01.004

Naik P, Nandibewoor S, Chimatadar S. Non-covalent binding analysis of sulfamethoxazole to human serum albumin: Fluorescence spectroscopy, UV–vis, FT-IR, voltammetric and molecular modeling. Journal of Pharmaceutical Analysis 2015;5(3):143-152. https://doi.org/10.1016/j.jpha.2015.01.003

Khan SN, Islam B, Khan AU. Probing midazolam interaction with human serum albumin and its effect on structural state of protein. Int. J. Integ. Biol. 2007;1:102–112.

Andrews E, Fleming R, Grisar J, Kihm J, Wenstrup D, Mayer G. Bis basic-substituted polycyclic aromatic compounds. New class of antiviral agents. 2. Tilorone and related bis-basic ethers of fluorenone, fluorenol, and fluorene. Journal of Medicinal Chemistry 1974;17(8):882-886. https://doi.org/10.1021/jm00254a020

Valeur B, Brochon JC. New Trends in Fluorescence Spectroscopy 6th edn (Berlin :Springer); 1999, pp. 25–28.

Sahoo B, Ghosh K, Dasgupta S. Molecular interactions of isoxazolcurcumin with human serum albumin: Spectroscopic and molecular modeling studies. Biopolymers 2009;91(2):108-119. https://doi.org/10.1002/bip.21092

Lakowicz JR. Principles of Fluorescence Spectroscopy 3rd edn New York:Springer; 2006; 954 p. https://doi.org/10.1007/978-0-387-46312-4

Lakowicz J, Weber G. Quenching of fluorescence by oxygen. Probe for structural fluctuations in macromolecules. Biochemistry 1973;12(21):4161-4170. https://doi.org/10.1021/bi00745a020

Silva D, Cortez C, Cunha-Bastos J, Louro S. Methyl parathion interaction with human and bovine serum albumin. Toxicology Letters 2004;147(1):53-61. https://doi.org/10.1016/j.toxlet.2003.10.014

Ross P, Subramanian S. Thermodynamics of protein association reactions: forces contributing to stability. Biochemistry 1981;20(11):3096-3102. https://doi.org/10.1021/bi00514a017

Aki H, Yamamoto M. Thermodynamics of the Binding of Phenothiazines to Human Plasma, Human Serum Albumin and α1-Acid Glycoprotein: A Calorimetric Study. Journal of Pharmacy and Pharmacology 1989;41(10):674-679. https://doi.org/10.1111/j.2042-7158.1989.tb06339.x

Förster T. Zwischenmolekulare Energiewanderung und Fluoreszenz. Annalen der Physik 1948;437(1-2):55-75. https://doi.org/10.1002/andp.19484370105

Wu P, Brand L. Resonance Energy Transfer: Methods and Applications. Analytical Biochemistry 1994;218(1):1-13. https://doi.org/10.1006/abio.1994.1134

Shaklai N, Yguerabide J, Ranney H. Interaction of hemoglobin with red blood cell membranes as shown by a fluorescent chromophore. Biochemistry 1977;16(25):5585-5592. https://doi.org/10.1021/bi00644a031