Spectroscopic Studies on the Interaction between Tilorone and Human Serum Albumin
DOI:
https://doi.org/10.17721/fujcV5I1P48-59Keywords:
fluorenone, human serum albumin, fluorescence quenching, fluorescence resonance energy transfer, thermodynamic parametersAbstract
Under physiological conditions, in vitro interaction between the antiviral drug 2,7-bis[2-(diethylamino)ethoxy]-9-fluorenone dihydrochloride (Tilorone, TIL) and human serum albumin (HSA) was investigated at excitation wavelength 280 nm and at different temperatures (298 K and 313 K) by fluorescence emission spectroscopy. TIL showed a strong ability to quench the intrinsic fluorescence of HSA through a static quenching procedure. The binding constant is estimated as KA =7.19× 104L·mol-1 at 298 K. The enthalpy change (ΔHº) and entropy change (ΔSº) were derived to be negative values. A value of 1.63 nm for the average distance r between TIL (acceptor) and tryptophan residues of HSA (donor) was derived from the fluorescence resonance energy transfer.
References
Gentili P, Ortica F, Favaro G. Static and Dynamic Interaction of a Naturally Occurring Photochromic Molecule with Bovine Serum Albumin Studied by UV−Visible Absorption and Fluorescence Spectroscopy. The Journal of Physical Chemistry B 2008;112(51):16793-16801. https://doi.org/10.1021/jp805922g
Tian J, Liu J, He W, Hu Z, Yao X, Chen X. Probing the Binding of Scutellarin to Human Serum Albumin by Circular Dichroism, Fluorescence Spectroscopy, FTIR, and Molecular Modeling Method. Biomacromolecules 2004;5(5):1956-1961. https://doi.org/10.1021/bm049668m
Th. Peters. Jr.: All about Albumin. Biochemistry, Genetics, and Medical Applications. XX and 432 pages, numerous figures and tables. Academic Press, Inc., San Diego, California, 1996. Price: 85.00 US $.
Kwon S, Carson J. Fluorescence Quenching and Dequenching Analysis of RNA Interactionsin Vitroandin Vivo. Analytical Biochemistry 1998;264(2):133-140. https://doi.org/10.1006/abio.1998.2846
Khan S, Islam B, Yennamalli R, Sultan A, Subbarao N, Khan A. Interaction of mitoxantrone with human serum albumin: Spectroscopic and molecular modeling studies. European Journal of Pharmaceutical Sciences 2008;35(5):371-382. https://doi.org/10.1016/j.ejps.2008.07.010
Wang Y, Tang B, Zhang H, Zhou Q, Zhang G. Studies on the interaction between imidacloprid and human serum albumin: Spectroscopic approach. Journal of Photochemistry and Photobiology B: Biology 2009;94(3):183-190. https://doi.org/10.1016/j.jphotobiol.2008.11.013
Gao X, Tang Y, Rong W, Zhang X, Zhao W, Zi Y. Analysis of Binding Interaction between Captopril and Human Serum Albumin. American Journal of Analytical Chemistry 2011;02(02):250-257. https://doi.org/10.4236/ajac.2011.22030
Roy S, Ganai S, Nandi R, Majundar K, Das T. Studies Of The Interaction Of Bovine Serum Albumin With Pyrimidine-annulated Spiro-dihydrofuran And Its Biological Activities. Advanced Materials Letters 2015;6(11):1018-1024. https://doi.org/10.5185/amlett.2015.5933
Xu H, Yao N, Xu H, Wang T, Li G, Li Z. Characterization of the Interaction between Eupatorin and Bovine Serum Albumin by Spectroscopic and Molecular Modeling Methods. International Journal of Molecular Sciences 2013;14(7):14185-14203. https://doi.org/10.3390/ijms140714185
Rasoulzadeh F, Asgari D, Naseri A, Rashidi MR. Spectroscopic studies on the interaction between erlotinib hydrochloride and bovine serum albumin. DARU 2010;18:179-184.
Hossain M, Khan A, Suresh Kumar G. Interaction of the Anticancer Plant Alkaloid Sanguinarine with Bovine Serum Albumin. PLoS ONE 2011;6(4):e18333. https://doi.org/10.1371/journal.pone.0018333
WANG C, WU Q, WANG Z, ZHAO J. Study of the Interaction of Carbamazepine with Bovine Serum Albumin by Fluorescence Quenching Method. Analytical Sciences 2006;22(3):435-438. https://doi.org/10.2116/analsci.22.435
Roy A, Tripathy D, Chatterjee A, Dasgupta S. A spectroscopic study of the interaction of the antioxidant naringin with bovine serum albumin. Journal of Biophysical Chemistry 2010;01(03):141-152. https://doi.org/10.4236/jbpc.2010.13017
Varlan A, Hillebrand M. Bovine and Human Serum Albumin Interactions with 3-Carboxyphenoxathiin Studied by Fluorescence and Circular Dichroism Spectroscopy. Molecules 2010;15(6):3905-3919. https://doi.org/10.3390/molecules15063905
Dong S, Li Z, Shi L, Huang G, Chen S, Huang T. The interaction of plant-growth regulators with serum albumin: Molecular modeling and spectroscopic methods. Food and Chemical Toxicology 2014;67:123-130. https://doi.org/10.1016/j.fct.2014.02.020
Jin J, Zhang X. Spectrophotometric studies on the interaction between pazufloxacin mesilate and human serum albumin or lysozyme. Journal of Luminescence 2008;128(1):81-86. https://doi.org/10.1016/j.jlumin.2007.05.008
Zhang H, Wang Y, Zhou Q. Fluorimetric study of interaction of benzidine with trypsin. Journal of Luminescence 2010;130(5):781-786. https://doi.org/10.1016/j.jlumin.2009.11.032
Li D, Zhu J, Jin J. Spectrophotometric studies on the interaction between nevadensin and lysozyme. Journal of Photochemistry and Photobiology A: Chemistry 2007;189(1):114-120. https://doi.org/10.1016/j.jphotochem.2007.01.017
Zhu J, Li D, Jin J, Wu L. Binding analysis of farrerol to lysozyme by spectroscopic methods. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2007;68(2):354-359. https://doi.org/10.1016/j.saa.2006.11.045
Gowda B, Mallappa M, Gowda J, Rengasamy R. Interaction of ketoconazole with bovine serum albumin: electrochemical, spectroscopic and molecular modeling studies J. Appl. Pharm. Sci. 2015;5:037-044.
Abu T, Ghithan J, Abu-Taha M, Darwish S, Abu-hadid M. Spectroscopic approach of the interaction study of ceftriaxone and human serum albumin. Journal of Biophysics and Structural Biology 2014;6(1):1-12. https://doi.org/10.5897/jbsb2013.0045
Hamdi O, Feroz S, Shilpi J, Anouar E, Mukarram A, Mohamad S, Tayyab S, Awang K. Spectrofluorometric and Molecular Docking Studies on the Binding of Curcumenol and Curcumenone to Human Serum Albumin. International Journal of Molecular Sciences 2015;16(3):5180-5193. https://doi.org/10.3390/ijms16035180
Salam M, Rokonujjaman M, Rahman A, Nasrin Sultana U, Sultan M. Study of in Vitro Interaction of Sildenafil Citrate with Bovine Serum Albumin by Fluorescence Spectroscopy. Pharmacology & Pharmacy 2015;06(02):94-101. https://doi.org/10.4236/pp.2015.62012
Meti M, Nandibewoor S, Joshi S, More U, Chimatadar S. Multi-spectroscopic investigation of the binding interaction of fosfomycin with bovine serum albumin. Journal of Pharmaceutical Analysis 2015;5(4):249-255. https://doi.org/10.1016/j.jpha.2015.01.004
Naik P, Nandibewoor S, Chimatadar S. Non-covalent binding analysis of sulfamethoxazole to human serum albumin: Fluorescence spectroscopy, UV–vis, FT-IR, voltammetric and molecular modeling. Journal of Pharmaceutical Analysis 2015;5(3):143-152. https://doi.org/10.1016/j.jpha.2015.01.003
Khan SN, Islam B, Khan AU. Probing midazolam interaction with human serum albumin and its effect on structural state of protein. Int. J. Integ. Biol. 2007;1:102–112.
Andrews E, Fleming R, Grisar J, Kihm J, Wenstrup D, Mayer G. Bis basic-substituted polycyclic aromatic compounds. New class of antiviral agents. 2. Tilorone and related bis-basic ethers of fluorenone, fluorenol, and fluorene. Journal of Medicinal Chemistry 1974;17(8):882-886. https://doi.org/10.1021/jm00254a020
Valeur B, Brochon JC. New Trends in Fluorescence Spectroscopy 6th edn (Berlin :Springer); 1999, pp. 25–28.
Sahoo B, Ghosh K, Dasgupta S. Molecular interactions of isoxazolcurcumin with human serum albumin: Spectroscopic and molecular modeling studies. Biopolymers 2009;91(2):108-119. https://doi.org/10.1002/bip.21092
Lakowicz JR. Principles of Fluorescence Spectroscopy 3rd edn New York:Springer; 2006; 954 p. https://doi.org/10.1007/978-0-387-46312-4
Lakowicz J, Weber G. Quenching of fluorescence by oxygen. Probe for structural fluctuations in macromolecules. Biochemistry 1973;12(21):4161-4170. https://doi.org/10.1021/bi00745a020
Silva D, Cortez C, Cunha-Bastos J, Louro S. Methyl parathion interaction with human and bovine serum albumin. Toxicology Letters 2004;147(1):53-61. https://doi.org/10.1016/j.toxlet.2003.10.014
Ross P, Subramanian S. Thermodynamics of protein association reactions: forces contributing to stability. Biochemistry 1981;20(11):3096-3102. https://doi.org/10.1021/bi00514a017
Aki H, Yamamoto M. Thermodynamics of the Binding of Phenothiazines to Human Plasma, Human Serum Albumin and α1-Acid Glycoprotein: A Calorimetric Study. Journal of Pharmacy and Pharmacology 1989;41(10):674-679. https://doi.org/10.1111/j.2042-7158.1989.tb06339.x
Förster T. Zwischenmolekulare Energiewanderung und Fluoreszenz. Annalen der Physik 1948;437(1-2):55-75. https://doi.org/10.1002/andp.19484370105
Wu P, Brand L. Resonance Energy Transfer: Methods and Applications. Analytical Biochemistry 1994;218(1):1-13. https://doi.org/10.1006/abio.1994.1134
Shaklai N, Yguerabide J, Ranney H. Interaction of hemoglobin with red blood cell membranes as shown by a fluorescent chromophore. Biochemistry 1977;16(25):5585-5592. https://doi.org/10.1021/bi00644a031
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).