Effect of ligand substitution in [Fe(H-trz)2(trz)]BF4 spin crossover nanoparticles

Iurii Suleimanov, José Sanchez Costa, Gábor Molnár, Lionel Salmon, Igor Fritsky, Azzedine Bousseksou


Spin crossover iron(II) 1,2,4-triazole-based coordination compounds in the form of nanoparticles were prepared using a reverse microemulsion technique. Ligand substitution approach was applied to decrease the spin crossover temperature towards room temperature in the well-known [Fe(Htrz)2(trz)]BF4 complex. The compositions of the particles were determined by elemental analysis and thermogravimetry. The morphology was monitored by transition electron microscopy (TEM). The effect associated with the ligand substitution was investigated by optical and magnetic measurements. Transition temperature has been reduced by 33 K comparing the unsubstituted sample to that with 5 % substitution.


spin crossover; reverse microemulsions; nanoparticles; ligand substitution

Full Text:



Gütlich P, Hauser A, Spiering H. Thermal and Optical Switching of Iron(II) Complexes. Angewandte Chemie International Edition in English 1994;33(20):2024-2054. https://doi.org/10.1002/anie.199420241

Spin Crossover in Transition Metal Compounds: Topics in Current Chemistry, Eds: P. Gütlich and H. A. Goodwin, Springer, Berlin, 2004. https://doi.org/10.1007/b40394-9

Bousseksou A, Molnár G, Salmon L, Nicolazzi W. Molecular spin crossover phenomenon: recent achievements and prospects. Chemical Society Reviews 2011;40(6):3313. https://doi.org/10.1039/c1cs15042a

Shepherd H, Molnár G, Nicolazzi W, Salmon L, Bousseksou A. Spin Crossover at the Nanometre Scale. Eur. J. Inorg. Chem. 2012;2013(5-6):653-661. https://doi.org/10.1002/ejic.201201205

Kroeber J, Audiere J, Claude R, Codjovi E, Kahn O, Haasnoot J, Groliere F, Jay C, Bousseksou A. Spin Transitions and Thermal Hysteresis in the Molecular-Based Materials [Fe(Htrz)2(trz)](BF4) and [Fe(Htrz)3](BF4)2.cntdot.H2O (Htrz = 1,2,4-4H-triazole; trz = 1,2,4-triazolato). Chemistry of Materials 1994;6(8):1404-1412. https://doi.org/10.1021/cm00044a044

Galán-Mascarós J, Coronado E, Forment-Aliaga A, Monrabal-Capilla M, Pinilla-Cienfuegos E, Ceolin M. Tuning Size and Thermal Hysteresis in Bistable Spin Crossover Nanoparticles. Inorganic Chemistry 2010;49(12):5706-5714. https://doi.org/10.1021/ic100751a

Forestier T, Mornet S, Daro N, Nishihara T, Mouri S, Tanaka K, Fouché O, Freysz E, Létard J. Nanoparticles of iron(ii) spin-crossover. Chemical Communications 2008;(36):4327. https://doi.org/10.1039/b806347h

Tokarev A, Salmon L, Guari Y, Molnár G, Bousseksou A. Synthesis of spin crossover nano-objects with different morphologies and properties. New J. Chem. 2011;35(10):2081. https://doi.org/10.1039/c1nj20218a

Gural’skiy I, Molnár G, Fritsky I, Salmon L, Bousseksou A. Synthesis of [Fe(hptrz)3](OTs)2 spin crossover nanoparticles in microemulsion. Polyhedron 2012;38(1):245-250. https://doi.org/10.1016/j.poly.2012.03.012

Gural'skiy I, Quintero C, Molnár G, Fritsky I, Salmon L, Bousseksou A. Synthesis of Spin-Crossover Nano- and Micro-objects in Homogeneous Media. Chemistry - A European Journal 2012;18(32):9946-9954. https://doi.org/10.1002/chem.201201063

Shakirova O, Lavrenova L, Shvedenkov Y, Ikorskii V, Varnek V, Sheludyakova L, Varand V, Krieger T, Larionov S. . Journal of Structural Chemistry 2000;41(5):790-797. https://doi.org/10.1023/a:1004806101577

Varnek V, Lavrenova L, Gromilov S. Mössbauer study of the effect of iron substitution by nickel on the1A1 5T2 spin transition in Fe(4- amino- 1,2,4- triazole)3(NO3)2. J Struct Chem 1997;38(4):585-592. https://doi.org/10.1007/bf02762741

Krober J, Codjovi E, Kahn O, Groliere F, Jay C. A spin transition system with a thermal hysteresis at room temperature. J. Am. Chem. Soc. 1993;115(21):9810-9811. https://doi.org/10.1021/ja00074a062

Shakirova O, Shvedenkov Y, Naumov D, Beizel' N, Sheludyakova L, Dovlitova L, Malakhov V, Lavrenova L. . Journal of Structural Chemistry 2002;43(4):601-607. https://doi.org/10.1023/a:1022092319019

Varnek V, Lavrenova L. Mössbauer studies of Fe x Zn1−x (4-amino-1,2,4-triazole)3(NO3)2 complexes possessing the1 A 1⇄5 T 2 spin transition. J Struct Chem 1994;35(6):842-850. https://doi.org/10.1007/bf02578116

Varnek V, Lavrenova L. A comparative mössbauer study of solid Fe0.5M0.5(ATr)3(NO3)2) (M = Zn,Ni,Mn;ATr = 4-amino-1,2,4-triazole) possessing1 A 1 ⇄5 T 2 spin transition. J Struct Chem 1997;38(5):850-852. https://doi.org/10.1007/bf02763900

Coronado E, Galán-Mascarós J, Monrabal-Capilla M, García-Martínez J, Pardo-Ibáñez P. Bistable Spin-Crossover Nanoparticles Showing Magnetic Thermal Hysteresis near Room Temperature. Adv. Mater. 2007;19(10):1359-1361. https://doi.org/10.1002/adma.200700559

Dîrtu M, Rotaru A, Gillard D, Linares J, Codjovi E, Tinant B, Garcia Y. Prediction of the Spin Transition Temperature in Fe II One-Dimensional Coordination Polymers: an Anion Based Database . Inorganic Chemistry 2009;48(16):7838-7852. https://doi.org/10.1021/ic900814b

Titos-Padilla S, Herrera J, Chen X, Delgado J, Colacio E. Bifunctional Hybrid SiO2 Nanoparticles Showing Synergy between Core Spin Crossover and Shell Luminescence Properties. Angewandte Chemie International Edition 2011;50(14):3290-3293. https://doi.org/10.1002/anie.201007847

DOI: https://doi.org/10.17721/fujcV3I1P66-72


  • There are currently no refbacks.

ISSN 2312-3222 (Online)

Creative Commons License
 French-Ukrainian Journal of Chemistry is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2013 French-Ukrainian Journal of Chemistry