Isoindole and isomeric heterocyclic donating substituents in ruthenium(II)nitrosyl complexes with large first hyperpolarizabilities and potential two-photon absorption capabilities: a computational approach

Valerii Bukhanko, Isabelle Malfant, Zoia Voitenko, Pascal Georges Lacroix


A set of 22 ruthenium nitrosyl complexes of general formula [RuII(L)Cl2(NO)]+ is investigated computationally by the density functional theory. L is a terpyridine ligand substituted by different R isomers of formula C12H8N, either indole, isoindole, or carbazole, proposed as alternative donors to the electron-rich fluorene substituent. The computed resulting nonlinear optical (NLO) properties are found to strongly depend on the isomer. While the ruthenium complexes exhibit modest efficiencies at the second-order (two-photon absorption) level, some of the R isomers lead to complexes of enhanced capabilities in first order (b) nonlinear optics. The synthetic feasibility of these ligands is discussed.


ruthenium-nitrosyl; isoindole; two-photon absorption; DFT computations

Full Text:



Göppert-Mayer M. Über Elementarakte mit zwei Quantensprüngen. Annalen der Physik 1931;401(3):273-294.

Kaiser W, Garrett C. Two-Photon Excitation in CaF2:Eu2+. Physical Review Letters 1961;7(6):229-231.

Pawlicki M, Collins H, Denning R, Anderson H. Two-Photon Absorption and the Design of Two-Photon Dyes. Angewandte Chemie International Edition 2009;48(18):3244-3266.

Andraud C, Fortrie R, Barsu C, Stéphan O, Chermette H, Baldeck P. Excitonically Coupled Oligomers and Dendrimers for Two-Photon Absorption. Photoresponsive Polymers II 2008;:149-203.

He G, Tan L, Zheng Q, Prasad P. Multiphoton Absorbing Materials: Molecular Designs, Characterizations, and Applications. Chemical Reviews 2008;108(4):1245-1330.

Terenziani F, Katan C, Badaeva E, Tretiak S, Blanchard-Desce M. Enhanced Two-Photon Absorption of Organic Chromophores: Theoretical and Experimental Assessments. Advanced Materials 2008;20(24):4641-4678.

Strehmel B, Strehmel V. Two-Photon Physical, Organic, and Polymer Chemistry: Theory, Techniques, Chromophore Design, and Applications. Advances in Photochemistry ;:111-354.

Schmidt R. Photosensitized Generation of Singlet Oxygen. Photochemistry and Photobiology 2006;82(5):1161.

Ignarro LJ. Nitric Oxide: Biology and Pathology. Academic Press: San Diego, CA, 2000.

Bonavida B. Nitric Oxide (NO) and Cancer. Prognosis, Prevention and Therapy. Springer, 2010.

Rodrigues F, Carneiro Z, Mascharak P, Curti C, da Silva R. Incorporation of a ruthenium nitrosyl complex into liposomes, the nitric oxide released from these liposomes and HepG2 cell death mechanism. Coordination Chemistry Reviews 2016;306:701-707.

Ford P. Photochemical delivery of nitric oxide. Nitric Oxide 2013;34:56-64.

Tfouni E, Truzzi D, Tavares A, Gomes A, Figueiredo L, Franco D. Biological activity of ruthenium nitrosyl complexes. Nitric Oxide 2012;26(1):38-53.

Fry N, Mascharak P. Photoactive Ruthenium Nitrosyls as NO Donors: How To Sensitize Them toward Visible Light. Accounts of Chemical Research 2011;44(4):289-298.

Akl J, Sasaki I, Lacroix P, Malfant I, Mallet-Ladeira S, Vicendo P, Farfán N, Santillan R. Comparative photo-release of nitric oxide from isomers of substituted terpyridinenitrosylruthenium(ii) complexes: experimental and computational investigations. Dalton Transactions 2014;43(33):12721.

Hamblin M, Demidova T. Mechanisms of low level light therapy. Mechanisms for Low-Light Therapy 2006;6140:614001–614012.

Albota M. Design of Organic Molecules with Large Two-Photon Absorption Cross Sections. Science 1998;281(5383):1653-1656.

García J, Alary F, Boggio-Pasqua M, Dixon I, Heully J. Is photoisomerization required for NO photorelease in ruthenium nitrosyl complexes?. Journal of Molecular Modeling 2016;22(11):284.

Oudar J, Chemla D. Hyperpolarizabilities of the nitroanilines and their relations to the excited state dipole moment. The Journal of Chemical Physics 1977;66(6):2664-2668.

Oudar J. Optical nonlinearities of conjugated molecules. Stilbene derivatives and highly polar aromatic compounds. The Journal of Chemical Physics 1977;67(2):446-457.

Prasad PN, Williams DJ. Introduction to NLO effects in molecules and polymers. New-York: John Wiley & Sons, Inc. 1991, chapter 5 and 7.

Kovtunenko V, Voitenko Z, Sheptun V, Tyltin A, Chernega A, Struchkov Y, Babichev F. Comparative analysis of the electronic structure of positional isomers: Indole-isoindole. Chemistry of Heterocyclic Compounds 1984;20(11):1235-1240.

Jurić A, Sabljić A, Trinajstić N. Aromaticity in bridged heteroannulenes. Journal of Heterocyclic Chemistry 1984;21(2):273-282.

Kovtunenko VA, Voitenko ZV, Sheptun VL, Savranskiy LI, Tyltin AK, Babichev FS. The electronic structure of azinoisoindoles with the node nitrogen atom. Ukrainskiy Chimicheskiy J. 1985;51:976-987.

Gaussian 09, Revision E.01, Frisch M J, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ, Gaussian, Inc., Wallingford CT, 2009.

Hay P, Wadt W. Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. The Journal of Chemical Physics 1985;82(1):270-283.

Wadt W, Hay P. Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. The Journal of Chemical Physics 1985;82(1):284-298.

Hay P, Wadt W. Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. The Journal of Chemical Physics 1985;82(1):299-310.

Rose M, Mascharak P. Photosensitization of Ruthenium Nitrosyls to Red Light with an Isoelectronic Series of Heavy-Atom Chromophores: Experimental and Density Functional Theory Studies on the Effects of O-, S- and Se-Substituted Coordinated Dyes. Inorganic Chemistry 2009;48(14):6904-6917.

Hirva P, Haukka M, Jakonen M, Moreno M. DFT tests for group 8 transition metal carbonyl complexes. Journal of Molecular Modeling 2008;14(3):171-181.

Kleinman D. Nonlinear Dielectric Polarization in Optical Media. Physical Review 1962;126(6):1977-1979.

Morley JO, Pugh D. Computational evaluation of second-order optical nonlinearities. In: Nalwa HS, Miyata S, editors. Nonlinear optics of organic molecules and polymers. CRC press Boca Raton; 1997:29-56.

Ducere J, Lepetit C, Lacroix P, Heully J, Chauvin R. Quadratic Hyperpolarizability of Carbomeric Structures. Chemistry of Materials 2002;14(8):3332-3338.

Vance F, Hupp J. Probing the Symmetry of the Nonlinear Optic Chromophore Ru( trans -4,4‘-diethylaminostyryl-2,2‘-bipyridine) 3 2+ : Insight from Polarized Hyper-Rayleigh Scattering and Electroabsorption (Stark) Spectroscopy . Journal of the American Chemical Society 1999;121(16):4047-4053.

Dhenaut C, Ledoux I, Samuel I, Zyss J, Bourgault M, Bozec H. Chiral metal complexes with large octupolar optical nonlinearities. Nature 1995;374(6520):339-342.

Borges S, Davanzo C, Castellano E, Z-Schpector J, Silva S, Franco D. Ruthenium Nitrosyl Complexes with N-Heterocyclic Ligands. Inorganic Chemistry 1998;37(11):2670-2677.

Cormary B, Ladeira S, Jacob K, Lacroix P, Woike T, Schaniel D, Malfant I. Structural Influence on the Photochromic Response of a Series of Ruthenium Mononitrosyl Complexes. Inorganic Chemistry 2012;51(14):7492-7501.

Enriquez-Cabrera A, Sasaki I, Bukhanko V, Tassé M, Mallet-Ladeira S, Lacroix PG, Barba-Barba RM, Ramos G, Farfán Voitenko Z, Malfant I. Replacing two Chloride Anions by a Bipyridine in Ruthenium Nitrosyl (NO) Complexes with NO Release Capabilities: a Comparative Study. Eur. J. Inorg. Chem. accepted.

Shakibaei G, Bazgir A. A highly efficient one-pot synthesis of indenopyridine-fused spirocyclic systems. RSC Adv. 2016;6(27):22306-22311.

Pokholenko A, Voitenko Z, Kovtunenko V. Pyrido- and pyrimidoisoindoles: methods of synthesis and properties. Russian Chemical Reviews 2004;73(8):771-784.

Nagao H, Enomoto K, Wakabayashi Y, Komiya G, Hirano T, Oi T. Synthesis of Nitrosylruthenium Complexes Containing 2,2‘:6‘,2‘ ‘-Terpyridine by Reactions of Alkoxo Complexes with Acids. Inorganic Chemistry 2007;46(4):1431-1439.



  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

ISSN 2312-3222 (Online)

Creative Commons License
 French-Ukrainian Journal of Chemistry is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2013 French-Ukrainian Journal of Chemistry