Unexpected fragmentation of bis(triarylstannanethiocarbonyl)disulfides, formation and X-ray structure of triarylstannyl triarylstannanecarbodithioates

Authors

  • Ihor Kulai IMRCP, CNRS UMR 5623, University of Toulouse, 118, route de Narbonne, 31062 Toulouse, France. Taras Shevchenko National University of Kyiv, Department of Chemistry, 64/13, Volodymyrska Street, 01601, City of Kyiv, Ukraine.
  • Oleksii Brusylovets IMRCP, CNRS UMR 5623, University of Toulouse, 118, route de Narbonne, 31062 Toulouse, France. Taras Shevchenko National University of Kyiv, Department of Chemistry, 64/13, Volodymyrska Street, 01601, City of Kyiv, Ukraine.
  • Nathalie Saffon ICT, FR CNRS 2599, University of Toulouse, 118, route de Narbonne, 31062 Toulouse, France
  • Zoia Voitenko Taras Shevchenko National University of Kyiv, Department of Chemistry, 64/13, Volodymyrska Street, 01601, City of Kyiv, Ukraine.
  • Stéphane Mazières IMRCP, CNRS UMR 5623, University of Toulouse, 118, route de Narbonne, 31062 Toulouse, France.
  • Mathias Destarac IMRCP, CNRS UMR 5623, University of Toulouse, 118, route de Narbonne, 31062 Toulouse, France.

DOI:

https://doi.org/10.17721/fujcV3I1P53-59

Keywords:

stannanecarbodithioate, intramolecular nucleophilic substitution, X-ray analysis, intramolecular interaction

Abstract


The synthesis of bis(triarylstannanethiocarbonyl)disulfides was attempted by oxidation of lithium triaryl stannane carbodithioates with molecular iodine. Unexpectedly,the desired compounds are highly unstable and undergo subsequent fragmentation giving triarylstannyl triarylstannanecarbodithioates. The proposed mechanism for this transformation assumes intramolecular nucleophilic substitution with formation of six-membered ring transition complex, stabilized by interaction between tin and thiocarbonyl sulfur atom. Obtained compounds were identified by mass-spectrometry and NMR spectroscopies, and their structures were analyzed by X-ray diffraction. These molecules show the existence of intramolecular non-bonding interactions between the sulfur atoms of the thiocarbonyl moieties and tin atoms. These interactions reflect the tin - sulfur affinity and are the main driving force in the fragmen tation of bis(triphenylstannanethiocarbonyl)disulfides.

Supplementary information (CIF_file_1, CIF_file_2)

References

Hosler D. Prehistoric Polymers: Rubber Processing in Ancient Mesoamerica. Science 1999;284(5422):1988-1991. https://doi.org/10.1126/science.284.5422.1988

Erman B, Mark J. The Molecular Basis of Rubberlike Elasticity. Science and Technology of Rubber 2005:157-182. https://doi.org/10.1016/b978-012464786-2/50007-9

Akiba M. Vulcanization and crosslinking in elastomers. Progress in Polymer Science 1997;22(3):475-521. https://doi.org/10.1016/s0079-6700(96)00015-9

Mak A, Steudel R, Wong M. Homolytic S-S Bond Dissociation of 11 Bis(thiocarbonyl)disulfides R-C(-S)-S-S-C(-S)R and Prediction of A Novel Rubber Vulcanization Accelerator. Chem. Asian J. 2008;3(6):1026-1034. https://doi.org/10.1002/asia.200800036

Putra Manuaba IB. Indo. J. Chem. 2008;8:418-422.

Davies AG. Organotin Chemistry, 2nd, Completely Revised and Updated Edition, Willey-VCH, Weinheim, ISBN: 978-3-527-31023-4, 2004:438.

Moad G, Chong Y, Postma A, Rizzardo E, Thang S. Advances in RAFT polymerization: the synthesis of polymers with defined end-groups. Polymer 2005;46(19):8458-8468. https://doi.org/10.1016/j.polymer.2004.12.061

Kunze U, Bolz P, Winter W. Nucleophile Addition von Triorganozinn-Anionen an Kohlenstoffdisulfid. Röntgenstrukturbestimmung von Methyl-triphenylstannandithiocarboxylat. Chemische Berichte 1981;114(8):2744-2753. https://doi.org/10.1002/cber.19811140808

Kunze U, Bolz P. Nucleophile Addition von Triorganozinn-Anionen an Kohlenstoffdisulfid. III. Koordinationschemie der Triorganostannandithiocarbons�urealkylester. Z. Anorg. Allg. Chem. 1983;498(3):41-49. https://doi.org/10.1002/zaac.19834980306

Kunze U, Bolz P. Nucleophile Addition von Triorganozinn-Anionen an Kohlenstoffdisulfid. IV. Darstellung und Komplexbildung von 1,n-Bis(triphenylstannandithiocarbons�ure)alkylenestern. Z. Anorg. Allg. Chem. 1983;498(3):50-56. https://doi.org/10.1002/zaac.19834980307

Carr S, Colton R, Dakternieks D, Hoskins B, Steen R. S-Alkyl (triphenylstannyl)dithioformate and N-alkyl(triphenylstannyl)thioformamide derivatives of platinum. Preparation and phosphorus-31, tin-119, and platinum-195 NMR studies. Crystal and molecular structure of bis(triphenylphosphine)(S-methyl (triphenylstannyl)dithioformate)platinum(0). Inorganic Chemistry 1983;22(25):3700-3706. https://doi.org/10.1021/ic00167a007

Kunze U, Tischer R. Nucleophile Addition von Triorganozinn-Anionen an Kohlenstoffdisulfid, IX1) Synthese und Komplexierung neuer Triphenylstannandithioester. Chemische Berichte 1987;120(7):1099-1104. https://doi.org/10.1002/cber.19871200706

Hiller W, Kunze U, Tischer R. Molecular structures of the free and η1-coordinated triphenylstannane dithiobenzylester, (C6H5)3SnCS2CH2C6H5. Inorganica Chimica Acta 1987;133(1):51-55. https://doi.org/10.1016/s0020-1693(00)84371-6

Barton D, McCombie S. A new method for the deoxygenation of secondary alcohols. Journal of the Chemical Society, Perkin Transactions 1 1975;(16):1574. https://doi.org/10.1039/p19750001574

Singh S, Bhattacharya S. Synthesis of triphenyltin(IV) hydrosulfide. Inorganica Chimica Acta 2011;367(1):230-232. https://doi.org/10.1016/j.ica.2010.12.014

Pauling L. The Chemical Bond. Cornell University Press Ithaca, New York, 1976.

Bondi A. van der Waals Volumes and Radii. The Journal of Physical Chemistry 1964;68(3):441-451. https://doi.org/10.1021/j100785a001

Kato S, Tani K, Kitaoka N, Yamada K, Mifune H. Structural analysis of phenyl-germanium, -tin, and -lead dithiocarboxylates [(RCSS)xMPh4−x, M=Ge, Sn, Pb; x=1–3]: affinity between thiocarbonyl sulfur and Group 14 elements. Journal of Organometallic Chemistry 2000;611(1-2):190-199. https://doi.org/10.1016/s0022-328x(00)00453-8

Boivin J, Camara J, Zard S. Novel radical chain reactions based on O-alkyl tin dithiocarbonates. J. Am. Chem. Soc. 1992;114(20):7909-7910. https://doi.org/10.1021/ja00046a045

Moad G, Rizzardo E, Thang S. Living Radical Polymerization by the RAFT Process ? A Third Update. Aust. J. Chem. 2012;65(8):985. https://doi.org/10.1071/ch12295

Geagea R, Ladeira S, Mazières S, Destarac M. Chromium and Molybdenum Pentacarbonyl Complexes of Phosphinocarbodithioates: Synthesis, Molecular Structure and Behaviour in RAFT Polymerisation. Chemistry - A European Journal 2011;17(13):3718-3725. https://doi.org/10.1002/chem.201002342

SADABS, Program for data correction, Bruker − AXS.

Sheldrick G. A short history of SHELX . Acta Cryst Sect A 2007;64(1):112-122. https://doi.org/10.1107/s0108767307043930

Allen F. The Cambridge Structural Database: a quarter of a million crystal structures and rising. Acta Cryst Sect A Found Cryst 2002;58(3):380-388. https://doi.org/10.1107/s0108768102003890

Kozeschkow K, Nadj M, Alexandrow A. Untersuchungen über metallorganische Verbindungen, VII. Mitteil.: Vereinfachte Methode zur Darstellung von Triaryl-zinnhalogeniden. Berichte der deutschen chemischen Gesellschaft (A and B Series) 1934;67(8):1348-1349. https://doi.org/10.1002/cber.19340670810

Downloads

Additional Files

Published

2015-03-10

Issue

Section

Articles